028-8525-3068
新闻动态 News
News 公司动态
01土壤碳氮磷相关指标汇总分类相关指标汇总分类" data-fail="0" style="margin: 0px; padding: 0px; outline: 0px; vertical-align: middle; width: 677px; box-sizing: border-box !important; overflow-wrap: break-word !important; height: auto !important; visibility: visible !important;" title="土壤与植物相关指标汇总分类" imageid="0"/(点击图片放大)02植物碳氮磷相关指标汇总分类相关指标汇总分类" data-fail="0" style="margin: 0px; padding: 0px; outline: 0px; vertical-align: middle; width: 677px; box-sizing: border-box !important; overflow-wrap: break-word !important; height: auto !important; visibility: vi...
发布时间: 2023 - 10 - 26
浏览次数:0
作者:
发布时间: 2021 - 12 - 01
点击次数: 0
标题:Carbon allocation to the rhizosphere is affected by drought and nitrogen addition译名:干旱和氮添加影响根际碳分配期刊:Science of The Total EnvironmentIF:6.256发表时间:2021年7月9日第一作者: Ruzhen Wang 通讯作者:Feike A. Dijkstra论文id:https://doi.org/10.1111/1365-2745.13746摘要植物光合产物碳(C)分配至地下后,可与菌根真菌交换养分,也可作为根际沉积进入土壤,通过微生物矿化有机质(SOM)为植物提供养分。然而,水分和氮(N)有效性如何影响根际C分配(包括丛枝菌根真菌,共生体和根际沉积物)仍不明确。本研究使用13CO2脉冲标记实验来评估澳大利亚草地干旱和N添加对地下土壤和根的13C分配的影响,并检验了他们与丛枝菌根(AMF)定殖(Mycorrhizal colonization)间的关系。还验证了AMF与前期研究报道的根呼吸和根际沉积物分解之间的关系。结果发现,干旱均降低了分配至土壤和根系的过量13C的绝对量,可能是由光合C固定较少导致。相反地,干旱导致更多比例的过量13C分配到了土壤,而不是根系生物量中,说明更多的C分配到根际沉积和用于AMF生长与菌丝延伸。然而,与干旱不添加N 的处理相比,N添加与干旱的效应相反。具体地,N添加导致更大比例的过量C分配到根系,而更少分配于土壤,这与更高的土壤N和磷(P)有效性,根生物量和根尖数增加一致。说明养分限制的缓解促进了植物将相对多的C投资于根系生长和根系形状调节,而较少的C投资于根际沉积和菌根共生。菌根定殖与根沉积分解速率呈负相关,而与根系生物量和根系呼吸中过量的13C均呈正相关,表明菌根共生与根际沉积之间可能存在C分配的权衡。综上所述,该草地的地下C分配可以通过菌根定殖介导,受水分和养分有效性的强烈影响。背景超30%的光合固定C可能被分配至地下用于植物养分获取的C投资,尽管这因树种,生长阶段和环境条件而异。地下C投资可与菌根真菌交换养分,但也能通过细根沉积在根际,被称为根际沉积(包括活根,根共生体,衰老和死亡根系流失的化合物),可能诱导微生物矿化并释放封锁在SOM中的养分。C向菌根的分配是植物通过菌丝网络维持养分吸收和在干旱或养分限制等胁迫环境下生存十分重要的过程,其中,AMF是最常见的类型。根际沉积通过促进土壤微生物周转和SOM分解导致养分活化。因此,菌根共生和根际沉积均消耗了光合固定C,并且越来越多的证据表明这两...
作者:
发布时间: 2021 - 11 - 23
点击次数: 0
一.试剂1.无乙醇氯仿:氯仿中含有少量乙醇做稳定剂,乙醇会影响氯仿在低压下沸腾。所以需要提纯。提纯:在通风橱中,将氯仿(三氯甲烷)按1:2的体积比与蒸馏水一起加入分液漏斗中,充分摇动1min,慢慢放出下层氯仿于烧杯中,如此重复洗涤三次。得到无乙醇氯仿,加入适量无水氯化钙,去除氯仿中的水分。可重复使用。2.0.5mol/L硫酸钾溶液:称取硫酸钾87.1g,溶于去离子水中,稀释至1000ml3.1mol/L NaoH溶液:称取氢氧化钠(AR)4g,置于一大烧杯中,并立即倒出,然后加入不含CO2的蒸馏水约100mL,将溶液注入细口瓶中,塞紧橡皮塞,混匀,备用。4.沸石二.主要仪器自动有机碳分析仪、真空干燥器、小烧杯(蒸发皿)、中速定量滤纸、漏斗、震荡仪、万分之一分析天平三.试样的制备取新鲜的实验室待测样品充分混匀后,按四分法缩减至 100g,粉碎,然后全部通过10目孔径筛,装入样品袋备用。四. 分析步骤4.1 试样溶液提取4.1.1.称取试样5~10g(相当于干土10g,取部分样测含水量,确定称取土样重量)2份,分别放入25ml小烧杯(培养皿)中。将盛有一份土样的烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约放置烧杯2/3的量)的25ml烧杯,烧杯内放入少量沸石,同时放入盛有1mol/L NaOH溶液的小烧杯(吸收熏蒸过程中释放出来的CO2)。4.1.2.盖上真空干燥器盖子,用真空泵抽真空,使氯仿保持沸腾5min。关闭真空干燥阀门,于25度黑暗条件下培养24h。另一份样至于另一干燥器中为不熏蒸对照处理。4.1.3.熏蒸结束后,打开真空干燥器阀门(应该听到空气进入的声音,否则熏蒸不完全,重做,取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5到6次,每次30分钟,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。4.1.4.从干燥器中取出熏蒸和未熏蒸土样,将土样转移到50ml聚乙烯离心管(塑料瓶)中,加入40ml 0.5mol/L 硫酸钾溶液(土水比1:4)800 r/min振荡30分钟,用中速定量滤纸过滤。土壤提取液最好立刻分析,或--20℃冷冻保存,使用前需解冻摇匀。4.2 空白溶液制备取10ml硫酸钾溶液作为空白。4.3 试样测定吸取上述土壤提取液10ml(若浓度过高则稀释)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳、N含量。(仪器使用方法待定)五.结果计算土壤微生物生物量碳: Bc=Ec/KecEc为熏蒸与未熏蒸土壤的差值;Kec为转换系数,取值为0.45土壤微生物生物量氮: Bc=EN/KenEN为熏蒸与未熏蒸...
作者:
发布时间: 2021 - 11 - 23
点击次数: 0
标题:Root control of fungal communities and soil carbon stocks in a temperate forest译名:温带森林中真菌群落和土壤碳储量的根系控制期刊:Soil Biology and BiochemistryIF:6.265发表时间:2021年8月14日第一作者和通讯作者:Emily D. Whalen论文id:https://doi.org/10.1016/j.soilbio.2021.108390摘要森林土壤有机质(SOM)来源于地上和地下植物输入,很大比例的植物源有机碳(SOC)在形成SOM前经真菌群落处理。尽管真菌在凋落物和根系输入中的核心作用被人熟知,但关于真菌群落组成与地上凋落物和根输入相对转化为SOM的关系仍知之甚少。破坏性输入和去除实验(DIRT)提供了一个可以验证森林土壤地上凋落物和根输入长期单独或联合移除效应的系统。本研究通过DIRT实验测定了北方温带森林中根系和凋落物去除处理下的真菌生物量(麦角固醇),群落组成(ITS2)和群落构建(零模型),并将土壤C与真菌群落参数相联系。根,而不是凋落物,存在显著不同的真菌群落组成,并驱动了更随机的群落构建。根系与较高真菌生物量(尤其是外生菌根真菌和腐生真菌 )和较高土壤C储量相关联。由此产生的真菌生物量和土壤C之间的强烈正相关关系似乎是由腐生生物量特别驱动。真菌群落是地上地下植物输入并转化为SOM的重要介导子,表征其组成可能利于提升对植物输入对形成SOM的相对重要性的理解。背景森林土壤是个巨大的C汇,其C来源于地上和地下植物资源输入,即叶凋落物和根。植物C输入地下并进入SOM库中,可以储存几天至上千年。SOM的持久留存主要有两种途径:1)来自凋落物的可溶性化合物的淋溶和直接矿物稳定。2)微生物对植物C的加工和微生物残体的后续稳定,包括代谢产物。许多证据表明植物C的微生物加工和生物合成是SOM形成和稳定的主要途径,微生物作为介导者在SOM发展中发挥着关键作用。在森林土壤中,植物C输入主要由真菌转化,真菌是主要的分解者和生态系统中微生物SOM的贡献者。外生菌根真菌和腐生真菌作为温带森林中最丰富的两类真菌,在土壤C循环中扮演着重要角色。外生菌根真菌( ECM )是与根相关的互生菌,高达35 %的净初级生产通过其根寄主分配给ECM。此外,ECM还可能通过酶或芬顿化学氧化反应在地上凋落叶的腐烂中发挥着重要作用。尽管ECM不代谢凋落物分解过程中释放的C,但地上植物凋落物被认为是ECM的重要养分来源,尤其是N,因此预计这些资源将影响它们的丰度和或组成...
作者:
发布时间: 2021 - 11 - 17
点击次数: 0
为更好地给各位新老用户提供一站式科研检测服务,即日起,栢晖隆重推出科研数据处理与作图服务。部分服务项目如下:一、数据展示与统计分析小提琴图(violin plots)和箱式图(box plots)与传统的柱状图相比,基于Origin 2021软件绘制的这两类图可以很好的反应同一组处理下样本的数据分布情况,多用于具有多个重复或采样点的大样本数据,也是目前高水平SCI论文的常见数据展示形式。同时,采用单因素方差分析(one-way ANOVA analysis)检验不同处理间的差异显著性。(1)小提琴图(violin plots)(2)箱式图(box plots)图引自(1) Zhang et al., 2021. Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands. Soil Biology and Biochemistry.(2) He et al., 2021. Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biology.二、影响因子分析皮尔森相关系数分析(Pearson correlation coefficient)      也称皮尔森积矩相关系数(Pearson product-moment correlation coefficient) ,是一种线性相关系数,是最常用的一种相关系数。记为r,用来反映两个变量X和Y的线性相关程度,r值介于-1到1之间,绝对值越大表明相关性越强。正负值分别表示变量间正负相关性。图1方差分解分析(Variance partitioning)      将所有因素共有的方差分割,然后用于量化每一组因素的独特贡献。图2结构方程模型(Structural equation model)      用于评价目标变量与影响因子之间的直接和间接关系。这种方法可以划分一个变量对另一个变量可能产生的直接和间接影响,因此有助于探索自然生态系统中的复杂关系。图3随机森林分析(Random forest analysis)      用于分析多个因子对目标变量的相对...
作者:
发布时间: 2021 - 11 - 16
点击次数: 0
今天,栢晖生物给大家整理了如何通过比色法测定植物中有效磷的含量,具体流程如下:一、试剂所有试剂除注明者外,均为分析纯。1.1 10%(w/v)的HClO4:取7.874ml 72% 的HClO4定容至100ml。1.2 5%(w/v)的HClO4:取 39.3676ml 72%的HClO4定容至1L。1.3 硫酸-钼酸铵溶液(溶液A)1)溶解1.0g钼酸铵(NH4)6MO7O24·4H2O于约100ml水中; 2)然后徐徐加入6.25ml浓H2SO4(98%); 3)充分混匀,冷却后定容至250ml。  1.4 10%(w/v)抗坏血酸(VC)溶液(溶液B):溶解10g抗坏血酸于水中,溶解后定容至100ml,储存于棕色瓶中,4℃保存。  1.5 工作液:按体积比6:1混合溶液A和溶液B注:工作液需要每天配置,现配现用,配好后放置2小时后再使用。1.6 磷标准溶液的配制(60ppm ):准确称取0.230g磷酸二氢铵(NH4H2PO4)于水中,并定容至100ml,即得600ppm的磷标液。将600ppm的磷标液用提取剂【1:9(10% HClO4:5% HClO4)】稀释10倍,得60ppm的磷标准溶液。二、主要仪器万分之一分析天平、紫外可见分光光度计、恒温振荡机或往返式振荡机、酸度计 三、试样的制备取新鲜样本剪碎充分混匀后,装入样本瓶放在4℃备用。四、分析步骤4.1 称取0.5g鲜样称重m,用液氮研磨成粉末。待研钵温度上升后,加入1ml 10%HClO4研磨混匀。 4.2 在研钵中分两次加入4.5mL的5%高氯酸,共计9ml。第一次加入4.5mL 5%高氯酸到研钵中后,将匀浆液转移到新的10ml离心管中;第二次再加入4.5mL 5%高氯酸到研钵中后,尽量洗净研钵中的样品,再将液体继续转移到第一次的10ml离心管中。4.3 在冰上放置30min,每隔5min上下颠倒混匀几次。则样品制备溶液为10ml(V=1ml+9ml=10ml=0.01L)  于4℃,10000g离心10min,取5ml上清液至新的离心管中,用于有效磷的测定(钼蓝法)。 4.4 取1ml(V1)上清液,在上清液中加入2ml的工作液,则反应液为3ml(V2=上清液+工作液),反应液于40℃温育20min。 4.5 反应液在室温冷却后,观察蓝色深浅,对蓝色过深的样品可适当稀释,地上部一般要稀释5倍。每个样品吸取200ul到酶标板中,于820nm可见光波下用酶标仪测定吸收值。4.6 标准曲线的绘制:将60ppm的磷标液用提取剂稀释,形成稀释标液。再与工作液反应,生成如下系列标准反应液溶液。用...
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务