028-8525-3068
新闻动态 News
News 公司新闻
文献解读BAIHUI原名:Trophic interactions in soil micro-food webs drive ecosystem multifunctionality along tree species richness译名:土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性期刊:Global Change BiologyIF: 11.6发表日期:2024.03第一作者:Xiuzhen Shi01摘要背景:全球气候变化导致生物多样性的快速丧失并影响森林生态系统功能。然而,我们对跨生物多样性梯度中多种生态系统功能的模式和驱动因子的理解仍然有限。方法:本研究测量了亚热带幼林中多种生态系统功能(养分循环、土壤碳储量、有机质分解和植物生产力)对树种丰富度(1、4、8、16和32)的响应。结果:树种丰富度对养分循环、有机质分解和植物生产力的影响可以忽略不计,但土壤碳储量和生态系统多功能性随着树种丰富度的增加而显著增加。线性混合效应模型表明,土壤生物,特别是丛枝菌根真菌(AMF)和土壤线虫,对生态系统多功能性的相对影响最大。结构方程模型揭示了土壤微食物网中营养级相互作用下树种丰富度对生态系统多功能性的间接影响。即革兰氏阳性菌对土壤线虫丰度有显著的负影响(自上而下效应),而AMF生物量对土壤线虫丰度有显著的正影响(自下而上效应)。结论:本研究强调了多...
发布时间: 2024 - 04 - 22
浏览次数:0
作者:
发布时间: 2022 - 02 - 18
点击次数: 0
原名:Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity译名:成熟欧洲山毛榉根系分泌物沿养分有效性梯度的变化:根系形态特征和真菌活性的影响期刊:New PhytologistIF:10.15发表时间:2020.01第一作者:Ina C. Meier摘要:根系分泌物是一种重要的植物功能,对森林生态系统中土壤有机质动态和植物-土壤反馈具有强烈的影响。然而,成熟森林根系分泌物的主要生态驱动因素尚不确定。在两个生长季节内,原位收集生长于不同基岩类型的六个成熟欧洲山毛榉(Fagus sylvatica L.)林分的根系分泌物,并分析根系分泌物输入速率与根形态特征、土壤化学特征以及养分有效性之间的关系。结果表明,根系形态特征是驱动根系分泌物输入速率在养分有效性梯度上变化的主要因子。具体来说,SRL增加两倍,根系分泌物输入速率增加约5倍。同时,根系分泌物输入速率与土壤pH和N有效性显著负相关。与pH和养分含量较高的地点相比,在pH和养分含量较低的地点,真菌活性下降,根系分泌物输入速率约高3倍。除此之外,根系分泌物输入速率与参与分解低生物有效性碳和氮的胞外酶活性负相关。综上,在偏酸性且N有效性较低的土壤中,真菌活性降低,森林根系分泌物输入速率增加,更多的光合固定碳以根系分泌物形式输入到土壤中参与碳循环。研究背景根系分泌物输入是决定根际功能和植物-土壤关系的关键过程,最高可占植物总光合固定碳的1/3。根系分泌物中的不稳定碳组分可作为根际微生物易获取的重要能量物质来源。土壤微生物能够将土壤有机质(SOM)转化为生物可利用形式。然而,大部分微生物群落都受到能量限制并表现出功能不活跃性,其胞外酶产生也受到养分经济调控。因此,微生物产生的水解酶(将纤维素和几丁质解聚成生物可利用形式)与生物群落内部和整个生物群落中的底物有效性(SOM或总C含量)和pH值密切相关。相比之下,氮(N)有效性对水解酶活性的影响仍不确定。不同的研究表明,N限制可能抑制、不影响或促进水解酶活性,取决于真菌的相对数量。这些不同的结果可能反映了微生物产生酶的过程受到生物可利用碳限制,而根系分泌物被认为是一种微生物可利用碳的来源。养分限制会影响植物细根的生长和活力。大量研究表明养分限制条件下会诱导差异化的植物根系响应,比如比根长(SRL)增大、直径减小,或者根生物量增加和根寿命延长。然而,根系性状的响应是否对根...
作者:
发布时间: 2022 - 02 - 15
点击次数: 0
一、文章基本信息原名:Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient译名:根际土壤微生物群落和酶活性沿海拔梯度的变化规律作者:Chengjie Ren,et al.期刊:Catena影响因子:5.198发表时间:2021.二、文献阅读内容1 关键词海拔梯度;土壤微生物多样性和酶;外生菌根真菌和腐养真菌;根际效应;气候变化。2 研究主题和背景(1)背景:土壤系统中微生物群落和酶活性沿海拔梯度的分布规律已引起广泛关注;然而,根际土壤微生物多样性和酶活性的差异及其驱动因素尚不清楚。(2)主题:本研究覆盖六个海拔水平梯度,范围从海拔1308米到2600米。利用Illumina MiSeq对16S rRNA基因和ITS-1基因进行测序,分析根际和非根际土壤中细菌、真菌总量、外生菌根真菌(EcM)和腐养真菌群落;同时分析了土壤胞外酶活性。3 科学问题或科学假说(1)科学问题:沿海拔梯度下根际/非根际微生物群落结构和酶活性分布规律及其驱动因素?(2)科学假说:由于根际与非根际之间土壤理化性质的差异,如SOC, 是导致根际/非根际土壤微生物多样性和酶活性显著差异的重要因素,但随海拔升高而减小,而海拔梯度下植物特征和气候因素变化对其影响极小。4 以往研究及研究现状在一些研究中已经使用了海拔实验来检验气候变化对土壤微生物的影响,这些实验表明,微生物多样性和酶活性表现出不一致的模式,即随海拔变化单调减少,驼背或无。这是因为环境条件会随着海拔的变化而变化,从而为微生物创造了复杂的条件,虽然有一些研究报道了微生物群落的海拔分布,但大多数研究考虑的是全土,很少有研究考虑根际,特别是根际土壤和整体土壤在海拔梯度上的差异不太明确,根际土壤的养分转化率一般高于非根际土壤。5 材料与方法A.样地与土壤样品采集与保存:该实验于2018年7月进行采样,6个海拔高度覆盖3种植被类型。1308m、1603m-QVA;1915m、2292m-QW;2406m、2600m-BA,这三种共生树种通常与外生菌根真菌(EcM)有关,外生菌根真菌在这些森林的土壤微生物群落中占主导地位。每个海拔梯度取三个重复。为了进行原位植物群落描述,在每个站点随机选择3个10 × 10 m象限、5个5 × 5 m象限和10个1 × 1 m象限,分别测定乔木、灌木和草本植物的丰富度和Shannon多样性,...
作者:
发布时间: 2022 - 02 - 11
点击次数: 0
超氧化物歧化酶(SOD)是生物体系中抗氧化酶系的重要组成成员,广泛分布在微生物、植物和动物体内。其是在上个世纪末才被发现,可以说是生物医学研究史上的一项重大成果,于人类生命研究具有极其重要的意义。今天我们就给大家分享一下如何通过比色法测定植物酶活SOD。图片来源于网络一、试剂所有试剂除注明者外,均为分析纯。1.1 磷酸缓冲液:A液:0.2M的KH2PO4溶液 分析纯KH2PO4  27.216克,用蒸馏水定容至1000毫升。 B液:0.2M的K2HPO4溶液 分析纯K2HPO4•3H2O 45.644克,用蒸馏水定容至1000毫升。或 A液:0.2M的NaH2PO4溶液 分析纯NaH2PO4•2H2O  31.21克,用蒸馏水定容至1000毫升。 B液:0.2M的Na2HPO4溶液  分析纯Na2HPO4•12H2O 71.64克,用蒸馏水定容至1000毫升。1.2 母液的配制: (1)0.5M 磷酸缓冲液(PH=7.8):A液21.25ml+B液228.25ml定容至1000ml; (2)130mM Met(甲硫氨酸):取1.9399克Met 用磷酸缓冲液(PH=7.8)定容至100ml; (3)750μM四氮唑蓝(NBT):取0.06133gNBT用磷酸缓冲液(PH=7.8)定容至100ml(避光保存); (4)100μM EDTA-Na2:取0.0372g EDTA-Na2用磷酸缓冲液(PH=7.8)定容至1000ml; (5)20μM FD (核黄素):0.00753gFD用磷酸缓冲液(PH=7.8)定容至1000ml(现配现用)。 1.3 SOD反应液: 磷酸缓冲液(PH=7.8):Met:NBT:EDTA-Na2:核黄素(FD):H2O的比例为15:3:3:3:3:2.5,按母液顺序配制。 二、主要仪器万分之一分析天平、紫外分光光度计、医用离心机、研钵三、试样的制备取新鲜样本剪碎充分混匀后,装入样本瓶放入4℃冷藏备用。四、分析步骤4.1 酶液的制备: 称取鲜样0.5g放入研钵中,加5毫升PH=7.8的磷酸缓冲液,冰浴研磨,匀浆倒入离心管中,冷冻离心20分钟(10000×g),上清液(酶液)倒入试管中,置于0~4℃下保存待用。 4.2 SOD的测定 取型号相同的试管,吸取20ul的酶液,加入3ml反应液,4000Lux照光(多用为环形日光灯的光照培养箱)30分钟(尽量做到照光情况一致)4.3 空白与对照的制备同时取四支试管,三支做对照(CK),一支做空白(不加酶液,以缓冲液代替);空白置暗处,对照(CK)与酶液同至于4000Lux条件下照光3...
作者:
发布时间: 2022 - 02 - 08
点击次数: 0
原名:Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands译名:青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度期刊:Global Change Biology2020年影响因子: 10.863在线发表时间:2021.11.02第一作者:Mei He通讯作者:Yuanhe Yang第一单位:中国科学院植物研究所植被与环境变化国家重点实验室研究背景微生物坏死碳(C)被认为是持久性土壤碳库的重要贡献者。然而,目前还缺乏对不同土层特别是高山生态系统微生物坏死量C的大规模系统观测。此外,植物碳输入和矿物性质等生物和非生物变量在调节微生物坏死量C方面的相对重要性是否会随土壤深度而改变尚不清楚。研究方案沿着青藏高原约2200公里的高寒草地样带进行了大规模采样,共采集了36个地点的表土和底土样品(Figure 1a),并根据氨基糖估算了微生物残体C的含量。为了探索微生物残体C的关键决定因素,检测了各种生物和非生物因素,包括植物碳输入、微生物性质(如微生物生物量C (MBC)、总磷脂脂肪酸(PLFAs))、矿物保护(粘土含量、铁/铝氧化物和交换性钙)和土壤理化性质(如:土壤温度、有机碳与全氮比)。进一步采用方差分解分析(VPA)和结构方程模型(SEM)定量分析了这些因素对土壤微生物残体C空间变化的相对贡献。主要研究结果在36个采样点,表层和深层土壤的微生物残体C分别为0.55 ~ 34.78和0.40 ~ 15.19 mg g-1 dry soil,平均值分别为9.57, 1.72和3.29, 0.57 mg g-1 dry soil. 高寒草原、高寒草甸以及整个高寒草地的微生物残体C均随土壤深度的增加而显著降低(Figure 1 c)。与总微生物残体C一致,真菌和细菌残体C在表土中显著高于底土(Figure S1)。而在有机碳归一化条件下,两种草地类型的土壤微生物残体C含量均无显著差异(高寒草原:P = 0.47;高寒草甸:P = 0.40)或整个高寒草甸(P = 0.28,Figure S2)。有趣的是,高寒草地微生物残体C对土壤有机碳的贡献显著低于全球草地 (表土:45.4% vs 58.1%;底土:41.7% vs. 53.7%; Figure S3)。微生物残体C的主要决定因素与土壤深度有关。在表土中,微生物残体C随植物C输入量、MBC、总PLFAs、真菌PLFAs和细菌PLFAs的增加而显著增加(Fig...
作者:
发布时间: 2022 - 01 - 12
点击次数: 0
摘要:微生物残体在土壤有机碳(SOC)积累中起重要作用。然而,从凋落物到矿物土壤,微生物残体碳(C)浓度及其对有机碳固存的贡献,以及影响残体碳积累的因素尚不清楚。为了解决该问题,我们在黄土高原栎林凋落物-矿物土壤剖面上开展了微生物残体碳的组成分布特征及其对SOC固存贡献的研究。本研究基于微生物细胞壁的生物标志物氨基糖来估计微生物残体C浓度。结果表明,从Oi1层到Oa层,微生物残体C增加,而从Ah1层到AB层微生物残体C减少。微生物残体C在凋落物-矿物土壤界面的累积量最高(Oa层总微生物残体量为39.5 Mg ha−1, Ah1为22.8 Mg ha−1)。从Oi1到Ah2,总微生物残体C对SOC的贡献增加。其中,总微生物残体C平均分别占Ah1、Ah2和AB层栎林矿质层SOC的40.7%、47.7%和37.0%。从凋落物到矿质土壤,真菌与细菌残体C的比值逐渐降低,说明相对较高的细菌残体C在较深层凋落物和较上层矿质土壤的积累更多。真菌和细菌残体C随活性有机C, 氮(N)和活性无机磷(P)的增加而增加,说明可溶性营养物质的增加导致微生物生物量的增加,进而导致更高的微生物残体C积累。综上,我们的研究结果表明,微生物对C或N的需求影响了可溶性营养物质的数量,并进一步导致微生物残体C分解或积累的变化。关键词:氨基糖,土壤有机碳固存,凋落物-矿物土壤剖面,化学计量学,栎林,黄土高原研究背景:越来越多的研究证据表明微生物残体是SOC的一个主要组成部分,在很多研究案例中微生物残体占SOC的50%以上。以往研究案例表明,在三年的凋落物分解实验中,只有不到三分之一的植物有机组分进入土壤,通过植物残体的物理转移和微生物残体C的续埋效应增加了SOC积累。然而,森林凋落物-土壤剖面中微生物残体的变化仍不清楚。该领域的研究能帮助我们更好地理解在野外凋落物分解过程中,微生物残体C是如何从枯死叶片进入土壤的。环境条件和微生物营养需求对残体再循环有强烈影响。环境中C, N的高有效性促进了微生物残留物的积累。例如,营养丰富的环境中,微生物群落采用高产策略促进生长,从而加速残体积累。相反,在养分限制的条件下,采用营养获取策略的微生物群落限制残留物的产生和积累。因此,微生物对C, N的需求和环境C, N有效性可能会影响微生物残留物的积累和分解,因为微生物C/N/P化学计量学取决于土壤或凋落物中的养分有效性。相比矿质土壤或凋落物的总养分,土壤或凋落物中的活性养分(如活性C、N和P)及其C/N/P比更多变,但更接近土壤微生物的化学计量学。微生物残体是一种重要的N资源,有助于缓解过量活性C输入下的微生物N的缺...
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务