028-8525-3068
新闻动态 News
News 行业新闻

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献

日期: 2022-01-12
标签:
微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


摘要:

微生物残体在土壤有机碳(SOC)积累中起重要作用。然而,从凋落物到矿物土壤,微生物残体碳(C)浓度及其对有机碳固存的贡献,以及影响残体碳积累的因素尚不清楚。为了解决该问题,我们在黄土高原栎林凋落物-矿物土壤剖面上开展了微生物残体碳的组成分布特征及其对SOC固存贡献的研究。本研究基于微生物细胞壁的生物标志物氨基糖来估计微生物残体C浓度。结果表明,从Oi1层到Oa层,微生物残体C增加,而从Ah1层到AB层微生物残体C减少。微生物残体C在凋落物-矿物土壤界面的累积量最高(Oa层总微生物残体量为39.5 Mg ha−1, Ah1为22.8 Mg ha−1)。从Oi1到Ah2,总微生物残体C对SOC的贡献增加。其中,总微生物残体C平均分别占Ah1、Ah2和AB层栎林矿质层SOC的40.7%、47.7%和37.0%。从凋落物到矿质土壤,真菌与细菌残体C的比值逐渐降低,说明相对较高的细菌残体C在较深层凋落物和较上层矿质土壤的积累更多。真菌和细菌残体C随活性有机C, 氮(N)和活性无机磷(P)的增加而增加,说明可溶性营养物质的增加导致微生物生物量的增加,进而导致更高的微生物残体C积累。综上,我们的研究结果表明,微生物对C或N的需求影响了可溶性营养物质的数量,并进一步导致微生物残体C分解或积累的变化。

关键词:

氨基糖,土壤有机碳固存,凋落物-矿物土壤剖面,化学计量学,栎林,黄土高原

研究背景:

越来越多的研究证据表明微生物残体是SOC的一个主要组成部分,在很多研究案例中微生物残体占SOC的50%以上。以往研究案例表明,在三年的凋落物分解实验中,只有不到三分之一的植物有机组分进入土壤,通过植物残体的物理转移和微生物残体C的续埋效应增加了SOC积累。然而,森林凋落物-土壤剖面中微生物残体的变化仍不清楚。该领域的研究能帮助我们更好地理解在野外凋落物分解过程中,微生物残体C是如何从枯死叶片进入土壤的。

环境条件和微生物营养需求对残体再循环有强烈影响。环境中C, N的高有效性促进了微生物残留物的积累。例如,营养丰富的环境中,微生物群落采用高产策略促进生长,从而加速残体积累。相反,在养分限制的条件下,采用营养获取策略的微生物群落限制残留物的产生和积累。因此,微生物对C, N的需求和环境C, N有效性可能会影响微生物残留物的积累和分解,因为微生物C/N/P化学计量学取决于土壤或凋落物中的养分有效性。相比矿质土壤或凋落物的总养分,土壤或凋落物中的活性养分(如活性C、N和P)及其C/N/P比更多变,但更接近土壤微生物的化学计量学。微生物残体是一种重要的N资源,有助于缓解过量活性C输入下的微生物N的缺乏,这是一种比从不易分解的SOM中获取N更有效的微生物策略。然而,可溶性有机营养元素与微生物残体形成和积累的关系尚不清楚。因此,本研究探讨了黄土高原栎林凋落物-矿物土壤剖面中微生物残体的分布;微生物和可溶性养分C/N/P化学计量特征对微生物残体及其对有机碳固存的贡献。

科学问题:

(1)凋落物层和矿质土壤中微生物C/N/P的化学计量特征和微生物内稳态变化程度如何?

(2)从凋落物到矿质土壤,微生物残体浓度及其对土壤有机碳积累的贡献是如何变化的?

(3)影响微生物C/N/P化学计量学和残体积累的关键因素是什么?

主要结果:

1. 微生物生物量C/N/P化学计量学

凋落物总N、LOC和LON随凋落层深度的增加而增加,Oe和Oa层最高(图2b,2d,2e)。凋落物MBC和MBN不随凋落物层深度增加而下降(图2g,2h)。尽管凋落物层和矿质土层的C/N、C/P和活性的有机C/N随深度增加而降低(表1),但在凋落物层(从Oi1到 Oe层)和矿质土层(从Ah1 到AB层),微生物几乎分别保持了恒定的生物量C/N比(表1)。

表1 凋落物和矿质土壤C/N/P化学计量特征、活性有机/无机物特征和微生物生物量特征。数值以平均值±标准误差(SE)表示。

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图2 凋落物-矿质土壤剖面中C、N、P含量、活性有机/无机物质含量和土壤中微生物量。数值以平均值±标准误差(SE)表示。OC:有机碳; TN:总氮;TP:总磷;LOC:活性有机碳;LON:活性有机氮;LIP:活性无机磷;MBC:微生物生物量碳;MBN:微生物量氮;MBP:微生物生物量磷。

2.微生物残体C储量及其对SOC固存的贡献

凋落物层中真菌和细菌残体C储量随凋落物层深度增加而增加(图3),分别从8.1增加到35.4 Mg ha-1,从0.4增加到4.1 Mg ha-1(图3a,3b)。相反,矿质土壤层中真菌和细菌残体C储量从Ah1层到AB层降低(图3)。从凋落物到矿质土壤,真菌残体C和细菌残体C的比值降低(图3c)。凋落物层和矿质土壤层界面具有最高的微生物残体C积累。

从凋落物层到矿质土壤层,总微生物残体C对总SOC的占比增加(图3d)。具体表现为,在Ah1层,Ah2层和AB层中,总微生物残体C占比分别为40.7%,47.7%和37.0%。

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图3 在凋落物-矿质土壤剖面上,真菌残体C储量(a)、细菌残体C储量(b)、真菌/细菌残体C比值(c)和微生物残体C总量对SOC的贡献(d)。数值以平均值±标准误(SE)表示。总微生物残体C以真菌残体C和细菌残体C的总和表示,总微生物C占SOC的比例代表微生物残体C对SOC固存的贡献。

3.影响微生物C/N/P化学计量学和残体的因素

RDA分析结果表明在凋落物层中MBC, MBN, MBC/MBP, 和MBN/MBP与LOC, LON, LOC/LIP和LON/LIP显著相关(图4a)。具体表现在凋落物层中LOC/LIP, LOC, LON/LIP 和LON是解释上述变量的重要因素,表明微生物量及其化学计量学的变化由可溶性养分及其化学计量学所驱动。

RDA分析结果表明凋落物总C, N, P及其可溶性形态和化学计量比解释了微生物残体的主要变异(图4c,4d)。不考虑凋落物总C, N, P水平及其比率,活性有机C, N和无机P水平及其化学计量学是影响氨基糖和微生物残体C的主要因素。TN和MBN是驱动矿质土壤中氨基糖和微生物残体C变化的主要因子(图4d)。凋落物和矿质土壤中的活性有机C, N和无机P及其化学计量学在改变氨基糖和微生物残体C上发挥重要作用(图4c,4d)。具体表现为,凋落物和矿质土壤中的LOC/LIP和LON/LIP与真菌细菌残体C以及总微生物残体C呈正相关。只有凋落物中的LOC/LON和真菌细菌残体C以及总微生物残体C呈负相关。此外,真菌细菌残体C和总微生物残体C随可溶性C, N和P增加而增加(图5)

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图4 RDA分析显示了凋落物(a)或矿质土壤(b)中C、N、P、活性有机/无机物质及其化学计量学对微生物生物量C、N、P及其化学计量学的影响。RDA轴1和轴2对凋落物层微生物生物量C、N、P及其化学计量学的贡献率分别为58.8%和2.95%,对矿质土壤微生物生物量C、N、P及其化学计量学的贡献率分别为78.8%和12.5%.

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图5 活性有机C,N和活性无机P与真菌残体C,细菌残体C和总微生物残体C之间的关系。LOC,活性有机碳;LON,活性有机氮;LIP,活性无机磷。

结论

研究结果表明真菌残体C,细菌残体C和总微生物残体C随凋落物层深度增加而增加,随矿质层深度增加而降低。在凋落物层和矿质层交界面微生物残体C积累量最高,这归因于高浓度的可溶性养分,进一步导致了更高的微生物残体积累。尽管真菌残体C浓度,细菌残体C浓度和总微生物残体C浓度从凋落物层到矿质层是降低的,但是总微生物残体C对SOC的贡献增加。此外,微生物受活性有机C或N水平的影响,而活性有机C和N的缺乏可能导致微生物残体的分解。因此,微生物对C或N的需求影响可溶性养分水平,而可溶性养分水平的上下波动导致微生物残体C在分解或积累之间变化。在森林凋落物-矿质土壤剖面中,可溶性养分水平和微生物对它们的利用可能对理解微生物残体C的积累/分解及其对SOC固存的贡献至关重要。


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
  • 点击次数: 0
    2025 - 05 - 13
    18O标记技术的关键研究方向1、方法学优化标记实验设计:比较不同底物(简单糖类 vs. 复杂有机物)对CUE的影响,明确18O-H₂O标记时长与剂量效应。干扰因素控制:区分非生物过程(如化学氧化)对18O-CO₂的贡献,需通过灭菌对照实验校正。同位素分析技术:结合气相色谱-同位素比值质谱(GC-IRMS)或激光光谱,提高18O-CO₂检测灵敏度。2、生态机制解析微生物群落的影响:研究不同菌群(如真菌vs.细菌、r策略vs. K策略)的CUE差异,结合高通量测序(16S rRNA/ITS)关联群落结构。环境胁迫响应:干旱、升温、pH变化如何通过改变CUE影响碳分配(如:胁迫常降低CUE,增加呼吸损耗)。底物化学性质:木质素、纤维素等复杂底物通常导致更低CUE,需验证18O标记在不同底物中的适用性。3、模型整合与验证将18O-CUE数据纳入土壤碳模型(如Michaelis-Menten动力学、Microbial Mineral Carbon Stabilization, MIMICS),改进微生物生长-呼吸参数化过程。验证“微生物效率-碳截存”假说:高CUE是否真能促进土壤有机碳积累(争议点:高CUE可能减少胞外酶分泌,反而抑制降解)。实际应用方面1、气候变化与碳循环预测量化微生物呼吸对全球变暖的正反馈(低CUE → 更多CO₂释放),改进生态系统模型中的碳周转模块。评估土地利用变化(如农田耕作、森林砍伐)对土壤微生物功能的影响。2、土壤健康与农业管理通过调控CUE优化有机肥施用(如添加易降解碳源提高CUE,促进微生物生物量积累)。指导免耕或覆盖耕作,减少扰动对微生物群落的破坏,维持高CUE。3、污染修复与生态工程污染物(如重金属、石油烃)胁迫下微生物CUE的变化可指示土壤恢复潜力。设计合成微生物群落,定向提升降解效率(如:高CUE菌株可能更快转化有机污染物)。更多检测相关内容...
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务