028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 河流表层中溶解性黑碳的特征

日期: 2024-08-30
标签:
文献解读| 河流表层中溶解性黑碳的特征

原名:Characteristics of dissolved black carbon in riverine surface microlayer

译名:河流表层中溶解性黑碳的特征

期刊:Marine Pollution Bulletin

IF:5.3

发表日期:2023.07

第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室

一、背景

黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。

表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。

二、科学问题

(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。

(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。

三、材料与方法

(1)SML水样采集于2020年10月东部PR上、中、下游的沙绵(SM:23.1◦N/113.2◦E)、帕周(P:23.1◦N/113.4◦E)和黄蒲(HP:23.1◦N/113.5◦E)。

文献解读| 河流表层中溶解性黑碳的特征

(2)SML样品的采集使用预先清洗的定制旋转鼓采样器(长50 cm,直径30 cm,转速为73.5 r/min。

(3)测定指标:DOC(总有机碳(TOC)分析仪),DBC(采用Dittmar(2008)描述的BPCA方案),DBC的δ13C分析(作者2021年出版论文中相同的方法)。

(4)数据分析:利用斯皮尔曼相关系数研究DBC与DOC之间的相关性,采用了单因素方差检验来分析不同采样点间的DBC组成和δ13C值的差异。

BPCA操作方法将冻干的沉积物样品(50 mg)置于10 mL玻璃安瓿中。加入2 mL 65%硝酸后,将安瓿密封,放入100 mL聚四氟乙烯内衬不锈钢反应容器中。将反应容器紧密封闭,然后在180℃的烤箱中加热8h。在反应容器中加入了大约100 μL的水,以保持安瓿内外的稳定的蒸汽压,并防止安谱瓶爆炸。反应容器在室温下冷却,将安谱瓶中的溶液转移到4 mL小瓶中,在50℃的高压氮气流中干燥。样品在1 mL超纯水中重新溶解,用注射器过滤器(13 mm×0.22 μm,PTFE,ANPEL实验室技术)过滤,用岛津LC-20AT高效液相色谱(HPLC)测量BPCAs,并配备岛津SPDM20A光电二极管阵列探测器(PAD)。测量了三至六取代酸BPCA,包括1,2,3-苯三甲酸和1,2,4-苯三甲酸(B3CA)、1,2,4,5-苯四甲酸、1,2,3,5-苯四羧酸、1,2,3,4-苯四甲酸(B4CA)、1,2,3,4,5-苯五甲酸(B5CA)和1,2,3,4,5,6-苯六甲酸(B6CA)。除了市售的1,2,3,5-B4CA和1,2,3,4-B4CA外,通过使用BPCA标准溶液的外部校准曲线(线性回归r2≥0.999)对BPCA进行定量,并根据其异构体(即1,2,4,5-苯四甲酸)的校准曲线进行定量。所有BPCA标准品均购自Sigma-Aldrich。校准曲线的浓度水平分别为3.2、4.8、6.4、8、16、32、48、64和80 ng/μL。使用海洋沉积物参考物质(NIST SRM 1941b)测试了实验室开发的BPCA方法的准确性,结果为9.88±0.26 g BC/kg沉积物(或55.37±1.46 g BPCA-C/kg总有机碳(TOC),三个重复)。重复分析的变异系数<5%。BC氧化过程中产生的羧酸官能团的平均数量(Ave-BPCA)的不确定度为±0.02。对每批样品进行工艺空白试验,以进行质量控制。

同位素测测定对选定的沉积物样本进行了δ13C特征分析,以确定两种最丰富的BPCA,即B5CA和B6CA。使用较大样本量的沉积物(450 mg)对BPCA进行δ13C分析。与BPCA程序类似,沉淀物样品在10 mL安谱瓶中用2 mL 65%硝酸在180℃下氧化8h,然后用预清洁的玻璃纤维过滤器(直径2 cm,Whatman)过滤。然后在50℃的高压氮气流下去除硝酸,将样品重新溶解在1 mL超纯水中,并使用填充有阳离子交换树脂的玻璃柱(Dowex 50 WX8 400,Sigma-Aldrich)进行阳离子去除。从阳离子交换柱中获得约50 mL水溶液,将其在-20℃下冷冻并随后冷冻干燥。然后将样品重新溶解在通过将3.8 mL HPLC级三氟乙酸(TFA)与1000 mL超纯水混合制备的水溶液(pH:~1.3)中,并用制备液相色谱法(预LC)分离B5CA和B6CA。重新注入收集的B5CA和B6CA级分的等分试样,未发现可检测到的污染物。使用Surveyor HPLC系统通过Isolink接口(Thermo Scientific)连接到Delta V IRMS,测量分离的B5CA和B6CA的δ13C。δ13C值以相对于维也纳Pee-Dee-Belemnite(VPDB)的mil(‰)表示。B5CA和B6CA的回收率分别用标准品和玉米炭样品进行了测试,B5CA和B6 CA(五个重复)的回收率范围分别为81.2±2.6%和88.0±2.8%。

四、结果

(1)PR上、中和下游的DBC含量排序为:SM>PZ>HP。DBC和DOC之间存在显著相关性(p < 0.05),在亚马逊流域低流量时期不存在相关性。SML样品中DBC氧化产物中B5CA和B6CA占BPCAs的50%以上。B4CA、B5CA和B6CA均具有δ13C特征,这表明C3植物的生物质燃烧可能是主要来源。B6CA/B5CA比值相对较低,但与(B5CA+B6CA)与总BPCA的比值相比,SML中的DBC表现出更高的芳香族缩合程度。

文献解读| 河流表层中溶解性黑碳的特征


(2)河流DBC的芳香结构高度凝聚,其次是沿海DBC,而海洋的芳香凝聚程度最低。PR SML中的DBC密度比普遍低于全球河流DBC的密度比。

文献解读| 河流表层中溶解性黑碳的特征


(3)低径流期北极河流观测到的低B6CA/B5CA比值突出了水文因素对DBC芳香族凝聚的潜在影响。B6CA/B5CA和(B5CA+B6CA)/总BPCA低于DBC河流,如北极河流和亚马逊流域,分别为0.77-0.86和0.59-0.68。

文献解读| 河流表层中溶解性黑碳的特征


五、结论

(1)SML的DBC含量(100.9~166.6μg/ L)低于全球河流水域平均水平,遵循PR上>中>下游的趋势。

(2)DBC(BPCAs)的分子标记及其δ13C值在各采样点间无统计学差异(p > 0.05),表明以生物质燃烧为主要来源。

(3)SML中较低的DBC含量和DBC/DOC比值表明,SML的独特特性,如光化学和絮凝过程,可能会影响DOC浓缩芳香组分的含量和缩合程度。

(4)在有机富集的生态系统中,SML中的光化学过程可以通过絮凝触发DBC最浓缩和疏水组分的聚集和沉积。

更多实验检测相关讯息so栢晖生物了解更多~


  • 最新资讯 MORE+
  • 点击次数: 0
    2026 - 01 - 13
  • 点击次数: 0
    2026 - 01 - 05
    文献解读原名:Fast Decomposition of Nitrogen-Rich Mineral-Associated Organic Matter in Soils译名:土壤中富氮矿物结合有机质的快速降解期刊:Global Change BiologyIF: 12.0  发表日期:2025年8月第一作者:贾娟副研究员 通讯作者:冯晓娟研究员01.背景MAOM储存土壤中大部分碳氮,主要由富氮微生物残体组成,传统观点认为其通过矿物吸附稳定存在。然而,MAOM的分解潜力及内在调控机制尚不明确:氮富集化合物是因强矿物吸附而稳定,还是因化学易降解性而快速分解?有机-有机相互作用对MAOM稳定性的影响也不清楚。此外,MAOM碳饱和机制存在争议,需明确其内在性质(组成、碳负载)对持久性的调控作用。这些问题限制了对土壤碳库动态的预测能力,亟需深入研究。02.科学问题富氮MAOM的分解潜力是否更高?其内在性质(分子组成、碳负载)如何调控分解?03.材料与方法(1)构建13C标记的微生物/植物源MAOM,通过30天培养监测CO2释放及同位素特征,结合热解-气相色谱/质谱和氨基酸分析表征分子组成。(2)实验1:在不同纯矿物(蒙脱石、高岭石和针铁矿)上构建了组成和 OC 负载量不同的微生物源和植物源 MAOM(即MAOM-microbe和MAOM-plant),随后与来自两个森林和两个草地地点的表层土壤混合后进行分解,这些地点具有不同的气候和土壤特性。(3)实验2:在蒙脱石基质上构建了三种不同有机碳负载的微生物来源MAOM(MAOM-microbe),并在同一草地表层土壤中进行分解。(4)实验3:将实验1获得的部分MAOM-microbe经高压灭菌和洗涤处理以去除富含氮的细胞内化合物,随后在人工土壤中与未经灭菌的MAOM-microbe共同进行降解,以比较不同组...
  • 点击次数: 0
    2025 - 12 - 26
    原名:Long-Term Active Rather than Passive Restoration Promotes Soil Organic Carbon Accumulation by Alleviating Microbial Nitrogen Limitation in an Extremely Degraded Alpine Grassland译名:长期主动恢复比被动恢复更能促进土壤有机碳的积累:主要是通过缓解土壤微生物氮限制期刊:Advanced ScienceIF:15.6发表日期:2025.11第一作者:弓晋超(四川农业大学)01摘要草地退化会打乱土壤里微生物的养分循环,但在草地恢复过程中,“微生物缺不缺氮(氮限制)”到底怎么影响土壤有机碳(SOC)的变化,我们还不太清楚。这项研究在青藏高原的严重退化草地上,对比了持续 10 年的两种恢复方式:(1)主动恢复:播种本地植物种子(2)被动恢复:用沙障等措施保护,让其自然恢复研究把微生物的“代谢特征”也纳入进来,比如:基于化学计量(元素比例)判断的养分限制、微生物碳利用效率(CUEST),同时把 SOC 分成两部分来看:(1)POC(颗粒有机碳):相对“新鲜/活跃”的那部分(2)MAOC(矿物结合有机碳):更稳定、更不容易分解的那部分结果发现:(1)主动恢复能明显缓解微生物的缺氮问题(降低 44–71%),从而让 SOC 储量大幅增加:(a)表层土 SOC 从 0.81 增到 3.15 kg m⁻²(增加 291–467%)(b)深层土 SOC 从 0.54 增到 3.08 kg m⁻²(增加 291–467%)(2)同时,主动恢复让 CUEST 下降(表层降 54%,深层降 34%),并显著提高两类碳:(c)POC 增加 483–557%(d)MAOC...
  • 点击次数: 0
    2025 - 12 - 04
    CT技术是一种非破坏性三维成像技术,利用X射线扫描样品,通过重建算法生成样品内部结构的高分辨率三维图像。CT技术通过实现从土壤微观结构到植物器官内部形态的无损三维成像与定量分析,为土壤学、植物学及其界面过程的多尺度机制研究提供了前所未有的视角与方法支撑。 1.土壤应用方向分析:土壤孔隙结构与水分、气体运移土壤团聚体形成、稳定性及养分保持机制土壤动物活动痕迹及其对土壤结构的影响土壤-微生物空间分布与微生境分析 2.植物应用方向分析:植物根系构型、分布及其与土壤互作茎秆、叶片、种子、果实等器官的内部三维结构植物维管系统、孔隙网络与水分输导研究植物响应环境胁迫(如干旱、淹水、机械损伤)的结构变化 3. 土壤-植物交叉研究方向根-土界面互作过程与资源获取策略根系生长对土壤结构的塑造效应根际微域中水分、养分与微生物的空间异质性植物根系与土壤动物、微生物的互作可视化如下是土壤、植物相关样品CT检测相关图例展示和相关分析介绍,如需检测该指标欢迎联系文末工作人员详细沟通~01土壤柱状样品 1、取样:用小铲子清除土壤表面的杂物,CT扫描原状土柱采集使用高强度抗压PVC管(高10 cm,内径5 cm)进行操作。取样前将PVC管一端打磨成刀刃状打入土中进行取样,采集深度为5-10 cm。采样完成后,用保鲜膜对PVC管进行密封用于Micro-CT扫描。 2、检测 Micro-CT扫描通过计算机控制射线源发出射线束,旋转样品台承载所取的原状土柱,以0.5°/s的速度旋转,平板探测器负责采集扫描获得的系列投影数据,最后计算机通过将采集到的投影数据重建为土壤的横切片图像,每个样品可重建出大概1600张横切面图像。扫描过程中电压最大为160 kV和电流50 μA左右,扫描精度为25.5 μm。 3、图像分析 ...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区龙潭街道成业路7号联东U谷二期7栋10楼
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务