028-8525-3068
新闻动态 News
News 行业新闻

单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

日期: 2022-09-01
标签:
点击关注我们吧!
单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能
文献解读

原名:Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems

译名:单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

期刊:Microbiome

IF:16.837

发表时间:2022.7

第一作者:Pengfa Li

摘要
单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

背景:植物根际沉积能够调节根际相互作用、过程、养分和能量流动以及植物-微生物的交流,因此在保持土壤和植物健康方面具有至关重要的作用。然而,地下碳分配和根际沉积物化学多样性的变化是否以及如何影响根际生态系统中微生物群的功能尚不清楚。

方法:为了填补这一研究空白,我们研究了花生(Arachishypogaea)连作期间根际碳分配及其化学多样性与微生物多样性和功能之间的关系。在用13CO2连续标记植物后,我们利用基于DNA稳定同位素探针(DNA-SIP)的代谢组学、扩增子和宏基因组测序方法,研究了根际沉积物的化学组成和多样性以及活性根际微生物群的组成和多样性。

结果:根际沉积物和相关活性微生物类群在不同生长阶段和单一种植持续时间之间具有显著差异。具体而言,持续单一种植后,根际碳分配、根际沉积物化学多样性、微生物多样性和植物有益类群的丰度

(如Gemmatimonas,Streptomyces, Ramlibacter,Lysobacter)以及功能基因途径(如群体感应和抗生素的生物合成)逐渐降低。根际沉积物与根际微生物多样性和功能之间存在显著且强烈的相关性,尽管它们受不同的生态过程调节。总体而言,花生连作期间沉根际沉积和化学多样性的减少倾向于抑制根际生态系统中的微生物多样性及其功能。

结论:我们的研究结果首次提供了单一作物种植系统中根际微生物组功能失调机制的基本证据。为从根际沉积物的化学组成和多样性的角度深入理解复杂的植物-微生物相互作用提供了新视角。

研究背景
单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

根际是植物根系和土壤之间的界面,该区域的众多微生物之间相互作用决定了生物地球化学循环、植物生长以及对生物和非生物胁迫的耐受性。植物通过根系向根际输入大量的光合固定碳(C),这些有机化合物统称为根际沉积物。根际沉积物在根际区域具有多重功能,然而由于根际过程的动态变化性,导致很难追踪根际生态过程并深入了解根际过程的生态系统功能。因此需要对植物根际沉积物及其化学组分、化学多样性和根际微生物进行进一步研究,以从机制上理解它们在根际生态系统中的生态生理功能。

根际沉积主要受土壤和植物因素的影响,如土壤性质、植物物种、生长状态、生长阶段和其他环境相互作用。在农业生态系统中,植物地下碳分配受到种植制度的影响,如单作和间作,并最终随着持续时间的增加影响土壤性质和植物生长。根据植物资源优化假说,在长期单一种植条件下,土壤养分含量的变化(如氮的积累)可能会抑制植物对地下碳的分配。此外,长期单一种植通常会抑制植物生长,也可能会对地下碳分配产生负面影响。考虑到农业实践对土壤性质和植物生长的影响,我们预计连续单一种植可能会影响地下碳分配以及根际沉积物的化学组成和化学多样性。

根际沉积物的数量和化学组成能够招募不同的根际微生物群落。如果连续单季种植会影响根际沉积物,我们推测根际沉积物的变化进而能够影响根际微生物群,尤其是依赖于根际沉积物营养和能量需求的活性微生物类群,包括其多样性、组成和群落组装机制(决定性-随机性过程)。然而,这一观点从未在以往的研究中进行过验证。因此,根际沉积物化学多样性的变化是否以及如何影响根际微生物的功能需要良好的复制和时间序列研究。同时,连续单季种植系统为阐明根际沉积物化学多样性在根际微生物群功能中的作用提供了理想的实验平台。

考虑到在连续单一种植条件下,根际沉积物的化学多样性预计会减少,根际微生物功能也会降低或受到抑制。因此,我们假设连续单一种植将减少根际沉积物的化学多样性,从而抑制偏好利用根际沉积物的微生物群落的生物多样性和功能。

我们通过在花生(Arachishypogaea)连续单一栽培系统中进行温室试验来验证我们的假设(图1)。具体而言,研究了花生连续单一栽培如何影响(i)地下碳分配以及根际沉积物的化学组成和多样性;(ii)偏好利用根际沉积物的微生物群落的生物多样性、组成和组装过程;以及(iii)根际活性微生物的功能潜力。


单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

1关键实验设置流程图。P1P5P10表示单一种植的年限。W6W10表示种植时间6周和10周。


主要结果
单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

1.植物生物量和光合碳分配格局

P1处理(连续单作1年)的植物生物量在任何生长阶段都高于P5和P10处理(连续单作5年和10年;图2A)。随着单作年限增加,植物生物量显著下降(图2A)。光合碳分配在不同生长阶段(W)和不同处理(P)之间具有显著差异。W6阶段,P1P5P10处理的植株分别将76%56%43%的光合碳分配到土壤中(图2B)。在W10阶段,P1、P5和P10处理的植株分别将10%、14%和15%的光合碳分配到土壤中(图2B)。植物生物量,尤其是地下生物量与地下碳分配呈显著正相关。


单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

2植物生物量(A)和光合碳分配格局(B


2.根际沉积物的组成和化学多样性

木质素、脂类、蛋白质和氨基糖的相对丰度在所有样品中占优势。W10中的脂质明显少于W6,而缩合芳烃则呈现相反的趋势(图3A)W6阶段,P1处理中的缩合芳香烃、单宁和碳水化合物显著较高,但P5和P10处理中的不饱和烃较高。

无论是在植物生长阶段还是在不同单一种植年限之间,根际沉积物的组成都存在显著差异(图3B)。

W10的化学多样性始终高于W6;在两个生长阶段,随着单季种植年限的增加,均呈显著下降趋势(图3C)。此外,我们发现根际沉积物的化学多样性与植物生物量之间显著正相关(图3D)。


单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

3根际沉积物的化学组成和多样性


3.活性细菌的组成和生物多样性

在属的水平上,Trinickia,Gaiella, Dyella, Conexibacter, Burkholderia, Chujaibacter,Noviherbaspirillum, Roseisolibacter, Rhodococcus, andKtedonobacter是偏好利用根际沉积物的前10个平均相对丰度最高的类别(图4A)。

无论是在生长阶段还是在单一种植年限之间,活性细菌组成都存在显著差异,且单一种植年限(F2.18=8.014,P<0.001)比生长阶段对活性细菌组成的影响更大(图4B)

在两个生长阶段,P1中活性细菌的α-多样性(包括香农-维纳指数和物种丰富度指数)始终高于P5,这表明更多的细菌种类参与了P1中根际沉积物的利用(图4C)。此外,在W6,活性细菌的物种丰富度与地下C分配显著正相关(r=0.798,P=0.018),但在W10,这种相关性较弱(r=1.305,P=1.463,图5)。

总共有83个属在P1和P5中显著差异富集(图4D)。其中,71个种在P1中显著富集,而12种在P5中显著富集(图4D)。许多植物有益微生物在P1中富集,如Gemmatimonas,Streptomyces, Ramlibacter,Lysobacter,而在P5中富集的微生物如Trinickia,则具有潜在的植物致病性,这表明植物有害微生物的富集是以牺牲有益微生物为代价的。


单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

5利用根际沉积物的活性细菌组成和生物多样性。


A)前20个活性细菌属的归一化相对丰度。(B)活性细菌群落的PCoA分析。(C)活性细菌的α多样性。(D)双尾Wilcoxon检验显示P1P5处理中存在丰富的差异细菌。P1P5分别代表花生连续单作1年和5年;W6W10分别代表播种后6周和10周采集的样本


单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

5活性细菌生物多样性与植物地下碳分配的关系


4.根际沉积物与活性细菌的联系

根际沉积物的化学多样性与活性细菌的生物多样性之间存在显著正相关(图6)。


单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

6活性细菌生物多样性与植物地下碳分配的关系


5.活性细菌的功能潜力

宏基因组功能分析共产生7806个KO功能类别。PCoA和PERMANOVA表明,P1和P5之间的总体微生物功能潜力存在显著差异。微生物功能潜力的主要决定因素是根沉积物组成,而不是土壤物理化学性质的变化。

进一步分析了KO功能类别的KEGG途径富集情况,结果表明,P1P5中分别发现了26条和18条显著富集KEGG通路(图7)。更多的KOP1中显著富集,表明随着单一种植时间的持续,活性细菌尤其是在连作期间参与代谢的类群的功能潜力降低(图6)。


单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

7P1P5处理中活性细菌KEGG途径的差异。使用双尾Wilcoxon检验对P1P5之间的路径差异进行量化,并显示校正的P值。P1P5分别代表花生连续单作1年和5年的样本


结论
单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

利用13CO2标记、代谢组学和宏基因组分析,我们证明了根际沉积物的化学多样性、活性根际微生物多样性和代谢功能途径的显著减少是根际生态系统中微生物组功能退化的关键指标。更重要的是,证明了根际碳沉积及其化学多样性的减少倾向于抑制微生物多样性及其功能。该发现为根际化学多样性在影响根际微生物生物多样性及其功能方面的作用提供了新的见解,这对于土壤生态系统功能至关重要。


论文idhttps://doi.org/10.1186/s40168-022-01287-y

单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能

END

栢晖 #

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼4层

单一作物种植系统中根际沉积物化学多样性降低抑制根际微生物功能



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
  • 点击次数: 0
    2025 - 05 - 13
    18O标记技术的关键研究方向1、方法学优化标记实验设计:比较不同底物(简单糖类 vs. 复杂有机物)对CUE的影响,明确18O-H₂O标记时长与剂量效应。干扰因素控制:区分非生物过程(如化学氧化)对18O-CO₂的贡献,需通过灭菌对照实验校正。同位素分析技术:结合气相色谱-同位素比值质谱(GC-IRMS)或激光光谱,提高18O-CO₂检测灵敏度。2、生态机制解析微生物群落的影响:研究不同菌群(如真菌vs.细菌、r策略vs. K策略)的CUE差异,结合高通量测序(16S rRNA/ITS)关联群落结构。环境胁迫响应:干旱、升温、pH变化如何通过改变CUE影响碳分配(如:胁迫常降低CUE,增加呼吸损耗)。底物化学性质:木质素、纤维素等复杂底物通常导致更低CUE,需验证18O标记在不同底物中的适用性。3、模型整合与验证将18O-CUE数据纳入土壤碳模型(如Michaelis-Menten动力学、Microbial Mineral Carbon Stabilization, MIMICS),改进微生物生长-呼吸参数化过程。验证“微生物效率-碳截存”假说:高CUE是否真能促进土壤有机碳积累(争议点:高CUE可能减少胞外酶分泌,反而抑制降解)。实际应用方面1、气候变化与碳循环预测量化微生物呼吸对全球变暖的正反馈(低CUE → 更多CO₂释放),改进生态系统模型中的碳周转模块。评估土地利用变化(如农田耕作、森林砍伐)对土壤微生物功能的影响。2、土壤健康与农业管理通过调控CUE优化有机肥施用(如添加易降解碳源提高CUE,促进微生物生物量积累)。指导免耕或覆盖耕作,减少扰动对微生物群落的破坏,维持高CUE。3、污染修复与生态工程污染物(如重金属、石油烃)胁迫下微生物CUE的变化可指示土壤恢复潜力。设计合成微生物群落,定向提升降解效率(如:高CUE菌株可能更快转化有机污染物)。更多检测相关内容...
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务