028-8525-3068
新闻动态 News
News 行业新闻

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

日期: 2022-05-20
标签:

文献解读


译名:氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

原名:More soil organic carbon is sequestered through the mycelium-pathway than through the root-pathway under nitrogen enrichment in an alpine forest

期刊名称:Global Change Biology

影响因子: 10.151 (2020)

第一作者:朱晓敏,张子良

通讯作者:尹华军


01

摘要


植物根系与相关菌根真菌在调控森林土壤碳(C)循环中发挥着重要作用。然而,再氮(N)沉降加剧的条件下,根系和外生菌根菌丝是否以及如何差异化地影响高寒森林土壤有机碳(SOC)积累尚不清楚。基于此,以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1右),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度、方向与潜在作用机制。研究发现:无N添加处理下,根系途径增加SOC,而菌丝途径减少SOC。相对于无N添加处理而言,氮添加促进根系途径对SOC积累的正效应,SOC从18.02 mg C g-1增加至20.55 mg C g-1;而氮添加抵消了菌丝途径对SOC积累的负效应,SOC减少量从5.62 mg C g-1下降至0.57 mg C g-1。换言之,氮添加诱导的根系途径和菌丝途径的SOC增量分别为1.62~2.21 mg C g-1 和 3.23~4.74 mg C g-1。菌丝途径对SOC增加的贡献高于根系途径的主要原因是菌丝途径具有更高效运转的微生物C泵(MCP),氮添加下菌丝途径介导的微生物残体C增量占SOC增量的比例可达80%以上,而这一比例在根系途径中仅为54%左右。氮添加下菌丝途径具有更强的真菌代谢活性以及真菌残体C与土壤矿物结合能力是菌丝途径MCP高效运转的重要原因。总之,我们的研究强调了在氮沉降不断加剧背景下,森林外延菌丝及其介导的菌丝际C过程在调控高寒森林稳定性SOC的形成和积累中扮演着极其关键的角色。


02

研究背景

土壤是森林生态系统最大的碳(C)汇,其C储量的微弱变化都将对全球气候和碳循环产生深远影响。相应地,森林土壤C汇功能维持与优化管理已成为缓解全球气候变化压力、实现碳中和的重要途径之一。作为链接植物-土壤的核心纽带,根系除了作为吸收养分和水分的门户外,还通过分泌、周转与菌根共生等一系列生命活动深刻调控土壤C循环诸多关键过程,是深入理解土壤C源/汇变化与高效发挥土壤固碳功能的关键环节。地处高纬度/高海拔地区的高寒针叶林通常与外生菌根(ECM;简称菌根)共生,并通过产生大量的外延菌丝在土壤中形成庞大、功能多样的菌丝网络系统。树木将大量光合C分别通过根系和菌丝途径转移到土壤中,在土壤中形成了两个独特的微生物热点区,即“根际”和“菌丝际”(图1a)。由于两种途径的C源在输入数量和性质、周转以及留存上的差异,它们可通过不同的作用途径与机理来调控土壤C-养分循环过程,加剧了森林根系--土壤--微生物互作过程的复杂性和不可预知性。然而,尽管菌根在调控土壤C循环中扮演着重要角色已成为广泛共识,但现有研究更多地将根系和外生菌根外延菌丝作用视为一个整体考虑,缺乏对叠加环境变化后根系/菌丝途径调控土壤C形成、积累和稳定效应差异的细微辨识与区分,极大地限制了对多变环境变化下森林菌根活动介导的土壤碳汇效应与调控机制的深入认识。

为此,本研究为此,中科院成都生物研究所森林生态过程与调控项目组尹华军团队以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1b),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度与方向。在此基础上,借助生物标志物(长链脂肪酸、木质素酚类和氨基糖)分析技术,分析了两种途径下SOC分子组成(植物源C与微生物源C),精准量化和评估了两种途径下N添加诱导的微生物碳泵(Microbial carbon pump,MCP)能效变化,即N诱导的微生物残体C增量占SOC增量的比例。同时,结合土壤微生物群落结构、胞外酶活性以及SOC物理-化学稳定性分析,辨识了氮沉降下根系/菌丝两种途径介导的SOC储量和分子组成变化的潜在调控机制。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图1根系/菌丝途径对土壤碳-养分影响示意图(a)与原位内生长管试验设计示意图(b)。


03

主要结果

1) 氮沉降通过根系和菌丝途径使SOC含量增加了4.85~6.95 mg C g-1,其中菌丝途径贡献了约68%的SOC增量(3.23~4.74 mg C g-1),表明了外生菌根主导的森林中菌丝途径对N添加诱导的SOC增加具有重要作用(图 2)。导致根系途径和菌丝途径对土壤SOC积累的贡献差异可能源于氮添加下两种途径的SOC物理、化学保护机制的响应幅度有所不同,表现为氮添加下菌丝途径黏-粉粒组分C和Fe/Al氧化物的增幅均高于根系途径,即菌丝途径具有更高的SOC物理-化学稳定性(图 3a, b,图4)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 2 氮添加诱导的根系/菌丝途径SOC含量变化。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 3氮添加下根系/菌丝途径不同土壤颗粒组分(大团聚体:2000 μm ~250 μm, 微团聚体:250 μm~53μm, 黏-粉粒: < 53μm)有机碳变化 (a)。氮添加诱导的微团聚体C与黏-粉粒C增量与总SOC增量的回归分析(b)。氮添加下两种途径不同土壤颗粒组分有机碳分子组成(植物源C vs. 微生物残体C)的变化(c)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 4 氮沉降对高寒针叶林根系途径和菌丝途径有机碳化学保护作用的影响。

2) 无论是在根系途径还是菌丝途径,微生物残体C对氮添加诱导的SOC增量的贡献均大于植物源C,根系途径微生物残体C增量占SOC增量的56~58%,而菌丝途径微生物残体C增量占SOC增量的65~80%)(图 5),表明微生物碳泵能效在不同微生物热点区(如,根际、菌丝际)可能存在显著差别,进而影响稳定性SOC的形成和积累。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 5 氮添加下根系途径(a, b)和菌丝途径(c, d)植物源C和微生物残体C含量(mg g-1)的变化以及其对土壤有机碳增量的相对贡献(植物源或微生物残体C增量/SOC增量,%)。数值表示为两种途径下不施氮处理与施氮处理之间的差值。

3) 真菌残体C对稳定性有机碳的积累起到至关重要的作用。菌丝途径真菌残体碳增量对SOC增量的贡献约为根系途径的2倍(图 5)。线性相关分析表明,两种途径下真菌残体贡献的差异可能与菌丝途径具有更高的真菌代谢活性以及更强的真菌残体C与土壤矿物结合能力有关(图 6)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 6 根系/菌丝途径下细菌/真菌残体C增量对氮添加下SOC增量的相对贡献与细菌/真菌生物量、NAG酶活性的线性回归分析(a-c)。黏-粉粒组分中真菌残体C增量对其SOC增量的贡献与总土中真菌残体C增量对其SOC增量的贡献的线性回归分析(d)。


04

重要结论

基于上述结果,本研究提出了一个概念框架描述氮沉降增加背景下外生菌根主导森林植物根系、外延菌丝及其介导的相关生物地球化学过程在土壤有机碳固持中的作用效应(图 7)。研究结果表明氮沉降增加背景下菌丝途径可能通过微生物碳泵的高效运转促进土壤有机碳积累,强调了菌丝及其介导的菌丝际C过程在调控森林土壤有机碳动态中发挥着至关重要的作用。上述概念框架为理解高寒针叶林SOC动态响应全球环境变化(如N沉降、CO2浓度、温度、降水格局的变化)提供了新见解,并推动了多变环境下森林菌根活动介导的生物地球化学效应对土壤有机碳形成、积累和稳定性影响的评估。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 7 氮沉降增加背景下外生菌根主导森林根系/菌丝对土壤有机碳积累(g m-2 yr-1)的相对贡献。PLRC: 植物源C; BRC: 细菌残体C; FRC: 真菌残体C; UNIC: 未识别碳组分。图中加号之后的数值表示相对于不加氮处理而言,氮添加诱导的SOC碳库含量及植物源/微生物源C含量的增量。括号内的百分比表示N诱导的植物源/微生物源C增量对SOC增量的贡献大小。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 09 - 09
    原名:Aggregate size mediates the stability and temperature sensitivity of soil organic carbon in response to decadal biochar and straw amendments译名:团聚体尺寸调控长期生物炭与秸秆添加下土壤有机碳的稳定性及温度敏感性期刊:Soil Biology & BiochemistryIF:10.3发表日期:2025年9月3日BAIHUI ORGANISMS作者简介第一作者:陈雅兰,北京师范大学环境学院励耘博士后,师从孙可教授。主要从事生物炭环境地球化学行为及环境效应的研究。以第一作者在GCB、SBB、EST、CEE等期刊上发表学术论文19篇(含共一3篇),1篇封面文章,1篇入选ESI高被引论文,引用800次,H指数17。主持国家自然科学基金青年项目、博士后基金站中特别资助、博士后基金面上项目。曾获宝钢优秀学生特等奖、北京市优秀毕业生、北师大优秀博士学位论文等荣誉。通讯作者:孙可,北京师范大学环境学院教授、博士生导师,国家杰出青年基金、国家优秀青年科学基金和北京市杰出青年基金获得者。主要从事生物炭环境地球化学行为及环境效应的研究。在GCB、SBB、EST等期刊上发表高质量SCI论文130余篇,他引7000余次,H指数51,5篇论文入选ESI高引论文。高群,北京师范大学环境学院副教授,主要从事土壤微生物学研究。相关研究成果在PNAS、Nature Communications(2篇)等国际期刊发表高质量SCI论文40篇,引用1200余次,H指数21。授权国家专利2项。荣获中国微生物生态青年科技创新优秀奖,入选中国科协青年人才托举工程及中国科协“未来女科学家计划”。01背景土壤有机碳(SOC)的温度敏感性(Q10)是调控土壤-气候反馈的关键...
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
  • 点击次数: 0
    2025 - 09 - 04
    更多检测相关讯息搜栢晖生物了解更多~
  • 点击次数: 0
    2025 - 08 - 13
    栢晖分区服务升级通知2025年8月为进一步提升服务质量,优化检测服务体验,栢晖正式宣布完成技术对接团队分区服务升级!现将最新分区服务内容公告如下:
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务