028-8525-3068
新闻动态 News
News 行业新闻

文献解读:更高的吸收根生物量分配可改善叶片养分状况,但不能减轻北苏格兰松的气孔限制

日期: 2022-03-15
标签:

原名:Higher biomass partitioning to absorptive roots improves needle nutrition but does not alleviate stomatal limitation of northern Scots pine

译名:更高的吸收根生物量分配可改善叶片养分状况,但不能减轻北苏格兰松的气孔限制

期刊:Global Change Biology

IF:10.863

发表时间:2021.05.01

第一作者:Marcin Zadworny

通讯作者:Marcin Zadworny

合作作者:Joanna Mucha,Agnieszka Bagniewska-Zadworna,Roma Żytkowiak,Ewa Mąderek,Darius Danusevičius,Jacek Oleksyn,Tomasz P. Wyka,M. Luke McCormack

主要单位:Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland, etc.

摘要:

        恶劣环境条件同时影响叶结构和根性状,高纬度系统的枝叶生长主要受光周期控制,而根系生长在主要受环境温度调控。这些器官沿环境梯度的不同敏感性可能会改变地上和地下的功能关系。该文以沿温带-北方森林样带分布的苏格兰松树以及生长于同质园的不同种源树木为研究对象,研究吸收根分配与叶片性状之间的关系。作者将叶片氮、磷、比叶面积、针叶质量和δ13C特征的变化与吸收根生物量的地理趋势相关联,以更好地理解树木养分和水分平衡的变化格局。在同质园内,与南方种源树木相比,北方种源树木往吸收根的分配增加、吸收更多土壤养分,从而具有较高的叶片养分含量,然而不同种源地的叶片具有δ13C 值相似,这表明较高的吸收性根的分配并未在温暖气候下增加水分的供应。这些结果表明吸收性细根的分配对树木营养的重要作用,同时也表明在气候变化背景下,树木的气孔限制日益增加。


研究背景:

北方森林的低温、短生长季和低土壤养分特性,使得树木需要增强对细根的生物量分配,以确保其获得充足的土壤资源。 苏格兰松 (Pinus sylvestris L.) 是一种在欧亚大陆北部地区占主导地位的树种,其较高的细根生物量分配是受遗传控制的一种对环境的适应能力。北方苏格兰松根分配随生长温度的降低而增加,有助于树木适应低养分环境,为叶片的生长和代谢提供养分支持。例如,在苏格兰松树中,多达 38% 的叶片氮 (N) 分配给 Rubisco酶,光合能力随土壤氮供应而变化。然而,需要进一步的研究来了解地上和地下器官之间的生理协调及其对根系分泌物产生、根际微生物的组成和活性以及沿温带-北方梯度的土壤有机质矿化的影响。

根系特征的分析对于解释地上部分的功能和全面了解树木在环境变化下的表现至关重要。根和叶性状的协变模式已经在不同的调查中发现,但并不普遍。苏格兰松在关键根系和针叶性状中沿温带-北方梯度具有显著的种变异,为探讨根叶关系提供了一个代表性研究对象。弄清种内性状之间的协调关系及优势树种对环境压力的适应性是理解和预测北方森林生态系统对气候变化响应的关键。

研究内容:

该研究通过同质园实验调查了源自不同气候区域的苏格兰松树的细根和叶片性状,并沿着温带-北方森林样带野外调查树木特征。以SLA和针叶寿命作为叶片经济谱的主要维度,将叶片N和P浓度作为叶片养分和光合能力指标。以δ13C特征指示植物水分利用效率和水分压力。将这些指标与作者先前发表的不同苏格兰松种群间细根投资的数据相关联,以确定细根性状对叶片养分和生理功能的影响。


结果:

1. 叶片养分与吸收根投资有关

吸收根生物量与野外种群生长地、同质园不同种源原生地MAT均呈负相关关系(图 1a),两者斜率无显著差异,但在同质园生长的树木相比野外生长的树木具有更高的吸收根生物量。同质园中,来自寒冷地区的树木比来自温暖地区的树木具有更高的叶片N、P浓度(图 1b、c)。同质园中树木的叶片N、P浓度与其原生地MAT呈负相关,而野外原位生长的树木叶片N、P浓度与生长地的MAT呈正相关关系。

同质园中生长的树木的吸收根占比与叶片N和P浓度呈正相关关系,而野外原位生长的树木的吸收根占比与叶片N、P浓度负相关。该结果表明,叶片养分随吸收根碳投入的变化受环境的限制。

文献解读:更高的吸收根生物量分配可改善叶片养分状况,但不能减轻北苏格兰松的气孔限制

图1 苏格兰松吸收根生物量(a)、一年生针叶氮(b)和磷(c)含量与MAT的关系。灰色点为沿着温带-北方森林梯度原位生长的种群平均值,黑色点为同质园实验不同种源树木的种群平均值。

文献解读:更高的吸收根生物量分配可改善叶片养分状况,但不能减轻北苏格兰松的气孔限制

图2 一年生针叶氮(a)和磷(b)含量与吸收根生物量占比之间的关系。

2. 叶片δ13C由当地生长条件决定,而非由根性状决定

生长于同质园中的不同种源苏格兰松的叶片δ13C差异较小,与其种源地的MAT无显著关系。而不同站点原位采集的叶片δ13C与其站点的MAT呈正相关。δ13C在样带间的变异性显著高于同质园内的变异性。而吸收根投入比例与δ13C间无显著关系。这些结果共同表明植物生长地点的温度与增加的吸收根相比,对水分利用效率的影响更大。

文献解读:更高的吸收根生物量分配可改善叶片养分状况,但不能减轻北苏格兰松的气孔限制

图3 叶片δ13C与树木生长地(灰色点)或种源地(黑色点)MAT的关系(a),及叶片δ13C与吸收根占细根生物量的比例的关系(b)。

3. 叶片寿命和结构

叶片寿命与其原生地的MAT正相关(图4a),并且在同质园生长的树木叶片寿命显著低于在原生地生长的树木。此外,同质园内的一年生叶片生物量与其种源地的MAT无显著关系,而沿样带生长的树木一年生叶片生物量与站点的MAT呈正相关关系。然而,在原生地气温一致的情况下,同质园的树木的一年生叶片生物量高于在野外原位生长的树木,这表明在同质园内的树木相比野外样带生长的树木具有更好的营养条件。另一方面,野外原位生长的树木和同质园生长的树木的SLA均与原生地MAT呈正相关关系,且其截距和斜率无显著差异。

这些结果证实了叶片寿命——这一关键的功能性状对气温升高的适应能力,但SLA和叶片生物量随温度升高的增加的潜力相对有限。

文献解读:更高的吸收根生物量分配可改善叶片养分状况,但不能减轻北苏格兰松的气孔限制

图4 叶片寿命(a)、一年生叶片生物量(b)和比叶面积与MAT的关系。


论文id https://doi.org/10.1111/gcb.15668

原文网络连接:https://onlinelibrary.wiley.com/doi/10.1111/gcb.15668

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
  • 点击次数: 0
    2025 - 05 - 13
    18O标记技术的关键研究方向1、方法学优化标记实验设计:比较不同底物(简单糖类 vs. 复杂有机物)对CUE的影响,明确18O-H₂O标记时长与剂量效应。干扰因素控制:区分非生物过程(如化学氧化)对18O-CO₂的贡献,需通过灭菌对照实验校正。同位素分析技术:结合气相色谱-同位素比值质谱(GC-IRMS)或激光光谱,提高18O-CO₂检测灵敏度。2、生态机制解析微生物群落的影响:研究不同菌群(如真菌vs.细菌、r策略vs. K策略)的CUE差异,结合高通量测序(16S rRNA/ITS)关联群落结构。环境胁迫响应:干旱、升温、pH变化如何通过改变CUE影响碳分配(如:胁迫常降低CUE,增加呼吸损耗)。底物化学性质:木质素、纤维素等复杂底物通常导致更低CUE,需验证18O标记在不同底物中的适用性。3、模型整合与验证将18O-CUE数据纳入土壤碳模型(如Michaelis-Menten动力学、Microbial Mineral Carbon Stabilization, MIMICS),改进微生物生长-呼吸参数化过程。验证“微生物效率-碳截存”假说:高CUE是否真能促进土壤有机碳积累(争议点:高CUE可能减少胞外酶分泌,反而抑制降解)。实际应用方面1、气候变化与碳循环预测量化微生物呼吸对全球变暖的正反馈(低CUE → 更多CO₂释放),改进生态系统模型中的碳周转模块。评估土地利用变化(如农田耕作、森林砍伐)对土壤微生物功能的影响。2、土壤健康与农业管理通过调控CUE优化有机肥施用(如添加易降解碳源提高CUE,促进微生物生物量积累)。指导免耕或覆盖耕作,减少扰动对微生物群落的破坏,维持高CUE。3、污染修复与生态工程污染物(如重金属、石油烃)胁迫下微生物CUE的变化可指示土壤恢复潜力。设计合成微生物群落,定向提升降解效率(如:高CUE菌株可能更快转化有机污染物)。更多检测相关内容...
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务