028-8525-3068
新闻动态 News
News 技术交流

还原糖含量检测方法对比

日期: 2021-09-26
标签:

实验材料:

植物样:青稞种子


实验步骤:


01:样品提取

还原糖含量检测方法对比

准确称取0.5g经研磨的样本,放在100ml的烧杯中,先以少量蒸馏水调成糊状,然后加50ml蒸馏水,搅匀,置于50℃恒温水浴中保温20min,使还原糖浸出。离心或过滤,用20ml蒸馏水洗残渣,再离心或过滤,将两次离心的上清液或滤液全部收集在100ml的容量瓶中,用蒸馏水定容至刻度,混匀,作为还原糖待测液。


02:制作标准曲线

7支具有25ml刻度的血糖管或刻度试管,编号,按比例精确加入浓度为1mg/ml的葡萄糖标准液和3,5-二硝基水杨酸试剂。将各管摇匀,在沸水浴中加热5min,取出后立即放入盛有冷水的烧杯中冷却至室温,再以蒸馏水定容至25ml刻度处,用橡皮塞塞住管口,颠倒混匀(如用大试管,则向每管加入21.5ml蒸馏水,混匀)。540nm波长下,用0号管调零,分别读取16号管的消光值。以消光值为纵坐标,葡萄糖mg为横坐标,绘制标准曲线,求得直线方程。

03:显色测定

取3支25ml刻度试管,编号,分别加入还原糖待测液2ml,3,5-二硝基水杨酸试剂1.5ml,其余操作均与制作标准曲线相同,测定各管的吸光值。


04:数据处理  

分别在标准曲线上查出相应还原糖mg数,计算还原糖百分含量。

    






其他还原糖检测方法



1、DNS法

测各种还原糖标准曲线原理:3,5-二硝基水杨酸(3,5-dinitrosalicylic acid, DNS)在碱性条件下与还原糖的还原末端反应生成橙黄至棕红色的氨基化合物,在一定范围内,还原糖的量和反应液的颜色强度呈正比例关系。

  引伸:植物还原糖检测试剂盒是还原糖在碱性条件下被氧化成糖酸,3,5-二硝基水杨酸被还原为棕红色的氨基化合物。在一定范围内,还原糖的量与棕红色产物的颜色深浅程度呈一定比例关系。测定棕红色物质的吸光度,该吸光度值与还原糖含量呈线性关系,利用比色法和标准曲线测得样品中的还原糖的含量。


2、铁氰化钾法

根据蔗糖的非还原性,用生成物(葡萄糖和果糖)能够还原菲林溶液中的铜,再根据生成的氧化亚铜的量求出糖的含量。先制备还原糖待测混合液,通过0.1N的硫代硫酸钠滴定,达到当量点前,注入淀粉指示剂滴定至蓝色消失。土壤的转化酶活性,以单位土重的0.1N硫代硫酸钠毫升数(对照与试验测定的差)表示。

测各种还原糖标准曲线原理:铁氰化钾[K3Fe(CN)6〕本身为黄色(吸收峰在420nm)左右,而与还原糖反应可生成无色的亚铁氰化钾[K4 Fe( CN)6 ],在一定范围内,还原糖的量和反应液的颜色强度呈反比例关系。

    讨论:该法是还原糖检测的经典方法,铁氰化钾本身为黄色,与还原糖反应后生成无色的亚铁氰化钾。



3、MBTH法

测各种还原糖标准曲线原理:MBTH(3-甲基-2-苯并噻唑酮腙,3-methyl-2-benzothiazolinone hydrozone)首先与还原糖反应生成嗪,过量的MBTH被Fe+3氧化成阳离子,再与嗪反应生成青蓝色化合物,在一定范围内,还原糖的量和反应液的颜色强度呈正比例关系。

  讨论:该法为还原糖测定的新方法。在氧化反应过程中MBTH 失去两个电子和一个质子,形成了亲电子中间体,这一中间体被假设是具有活性的耦合化合物,中间体再与嗪反应。


还原糖含量检测方法对比

总结:

比较三种方法测还原糖的精密度和回收率,MBTH法的灵敏度最高,铁氰化钾法次之,DNS法的灵敏度最低。MBTH法灵敏度高,测定不受蛋白质、醋酸盐和琥珀酸盐缓冲液的干扰,对于不同聚合度的同类还原糖,其还原端的显色吸光系数基本相同,通过实验证明,它特别适合于多糖水解酶的低酶活测定或DON酶联免疫加标测定;DNS法虽然操作稳定,精密度高,但此法灵敏度相对较低,用此法测定微量多糖水解酶,如饲料添加剂中木聚糖酶活力时,则无法准确测定;

铁氰化钾法灵敏度高于DNS法,但也存在诸多弊端,如该法为逆向显色,还原糖浓度控制稍有不当或过量,即得不到任何结果。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
  • 点击次数: 0
    2025 - 05 - 13
    18O标记技术的关键研究方向1、方法学优化标记实验设计:比较不同底物(简单糖类 vs. 复杂有机物)对CUE的影响,明确18O-H₂O标记时长与剂量效应。干扰因素控制:区分非生物过程(如化学氧化)对18O-CO₂的贡献,需通过灭菌对照实验校正。同位素分析技术:结合气相色谱-同位素比值质谱(GC-IRMS)或激光光谱,提高18O-CO₂检测灵敏度。2、生态机制解析微生物群落的影响:研究不同菌群(如真菌vs.细菌、r策略vs. K策略)的CUE差异,结合高通量测序(16S rRNA/ITS)关联群落结构。环境胁迫响应:干旱、升温、pH变化如何通过改变CUE影响碳分配(如:胁迫常降低CUE,增加呼吸损耗)。底物化学性质:木质素、纤维素等复杂底物通常导致更低CUE,需验证18O标记在不同底物中的适用性。3、模型整合与验证将18O-CUE数据纳入土壤碳模型(如Michaelis-Menten动力学、Microbial Mineral Carbon Stabilization, MIMICS),改进微生物生长-呼吸参数化过程。验证“微生物效率-碳截存”假说:高CUE是否真能促进土壤有机碳积累(争议点:高CUE可能减少胞外酶分泌,反而抑制降解)。实际应用方面1、气候变化与碳循环预测量化微生物呼吸对全球变暖的正反馈(低CUE → 更多CO₂释放),改进生态系统模型中的碳周转模块。评估土地利用变化(如农田耕作、森林砍伐)对土壤微生物功能的影响。2、土壤健康与农业管理通过调控CUE优化有机肥施用(如添加易降解碳源提高CUE,促进微生物生物量积累)。指导免耕或覆盖耕作,减少扰动对微生物群落的破坏,维持高CUE。3、污染修复与生态工程污染物(如重金属、石油烃)胁迫下微生物CUE的变化可指示土壤恢复潜力。设计合成微生物群落,定向提升降解效率(如:高CUE菌株可能更快转化有机污染物)。更多检测相关内容...
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务