028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

日期: 2025-09-29
标签:
文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱
BAIHUI

文献解读


原名Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.

译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。

期刊:Geoderma

IF:6.6

发表日期:2025.8

第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)

01

背景

耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。

文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

1研究区及沿县岔河13个采样点位置示意图


02

科学问题

(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;

(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。


03

材料与方法

(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 

(2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 

(3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土壤芯样。将同块稻田内所有样方的土壤芯样混合制成复式样本,24小时内送至实验室经2毫米筛网过筛去除植物根系、石块及杂物,并将土壤分成两份。

(4)一份置于4℃保存用于微生物生理特性分析,包括微生物化学有效元素(CUE)、微生物生物量周转率、氨基糖类分析。

(5)另一份在室温下风干后用于检测土壤pH、水解氮(HN)、有效磷(AP)、有效钾(AK)、阳离子交换容量(CEC)、黏土含量、有机碳(SOC)、总氮(TN)、总磷(TP)、总钾(TK)及重金属分析。

文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

表2

文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱


04

结果

(1)各采样点土壤重金属污染物镉和铜(表1)含量超标,土壤pH均呈现典型农田土壤酸性特征,其中S4样本的酸度值最高达5.86。在氨基糖含量方面,S2位点的含量最高(1740.34 mg/kg),显著高于其他检测点(表3 )。微生物碳水化合物含量(MBC)的范围从S7位点的228.55 mg/kg到S2位点的847.70 mg/kg。微生物化学可逆性能量转换(CUE)反映了分解代谢与合成代谢活动的平衡状态,这一平衡主要决定了有机碳(SOC)的归宿。本研究中CUE值介于0.14至0.42之间(表3),处于采用 18O-H2O培养法研究水稻田土壤时报道的正常范围。我们的第一个假设得到验证:重金属污染会降低微生物CUE并加速微生物生物量周转。


(2)在土壤养分中,仅有TN和HN与微生物CUE呈现显著正相关( 图5a、d)。土壤微生物指数与微生物特征之间存在显著负相关关系,氨基酸糖与SOC(图4)和土壤养分(图5)存在正相关关系。微生物群落多样性和组成的改变可能是微生物化学上可利用能量(CUE)降低的关键因素。微生物多样性增强能拓宽代谢功能广度,有利于高效利用多种促进微生物生长的碳源底物,从而形成微生物多样性与CUE的正相关关系。此外,考虑到真菌在资源获取方面的高成本,细菌群落表现出比真菌群落更高的CUE,因此本研究中观察到的CUE降低可归因于重金属污染下细菌多样性的减少。

文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

图4 nemerow指数与土壤养分的关系:(a) TN含量,(b) TP含量,(c) TK含量,(d) HN含量,(e) AP含量,(f) AK含量。


文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

图5 土壤养分与微生物生理特征的关系。(a-f)微生物CUE与以下指标的关系:(a) TN含量,(b) TP含量,(c) TK含量,(d) HN含量,(e) AP含量,(f) AK含量;(g-l)微生物周转时间与以下指标的关系:(g) TN含量,(h) TP含量,(i) TK含量,(j) HN含量,(k) AP含量,(l) AK含量。


文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

图6.微生物变量与SOC含量的关系:(a)氨基糖含量,(b) MBC含量,(c)微生物CUE,(d)微生物周转时间。


(3)垂直园艺分析(VPA)结果显示,重金属、土壤属性和微生物因素共同解释了69.49 %的有机碳(SOC)变异(图7)。重金属污染还通过直接抑制MBC对SOC产生负面影响图(9a)。在重金属污染环境下,作为微生物合成代谢副产物的微生物生物量形成和残留物积累均减少( 图2a、图2b)。由此导致SOC总量下降( 图3a)以及氨基糖在SOC中的比例降低(图3b)。这些结果有力地证明,重金属污染通过抑制微生物的合成代谢活性,显著降低了微生物残留物的积累,最终影响了SOC的储存。这些发现支持了我们的第二个假设,即减弱的微生物合成代谢是重金属污染水稻田土壤中SOC变化的主要驱动因素。

文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

图2 nemerow指数与微生物变量的关系:(a)氨基糖含量,(b) MBC含量,(c)微生物CUE,(d)微生物周转时间。


文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

图3 nemerow指数与(a) SOC含量和(b)SOC中氨基糖比例的关系。


文献解读| 重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱

图7 SOC变化的分区分析。X1,仅由重金属解释的部分;X2,仅由微生物因素解释的部分;X3,重金属和微生物因素共同解释的部分;X4,重金属和土壤因子共同解释的部分;X5,三组因素共同解释的部分。

图8 针对SOC变化的预测因子进行的随机森林分析含排列重要性(MSE增加百分比)。各预测因子的显著性水平设定如下:*表示P < 0.05;**表示P < 0.01。


05

结论

(1) 重金属污染与微生物化学有效能量 (CUE)及微生物生物量周转率呈负相关,表明污染稻田土壤中的微生物生理特征发生显著改变。

(2) 微生物CUE的降低暗示着微生物合成代谢能力受损——在重金属胁迫下,微生物生长获得的碳比例相对呼吸作用有所减少。由此导致“微生物底物-微生物生物质-微生物残渣”链中的碳流动减弱。

(3) 这使得重金属污染对微生物生物量(MBC)形成和残留物生成产生负面影响,最终降低有机碳(SOC)的储存量。尽管观察到微生物生物质周转率加快,但其与氨基糖类或SOC无相关性。这种缺乏相关性的现象归因于重金属污染同时导致微生物生长速率下降。

(4) 综上所述,实证证据明确表明:重金属污染通过抑制微生物合成代谢并减少微生物残渣积累,导致稻田中SOC流失。我们的研究结果提示重金属污染将对水稻田土壤碳封存能力造成严重威胁。


更多检测相关讯息so栢晖生物了解更多~

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
  • 点击次数: 0
    2025 - 09 - 09
    原名:Aggregate size mediates the stability and temperature sensitivity of soil organic carbon in response to decadal biochar and straw amendments译名:团聚体尺寸调控长期生物炭与秸秆添加下土壤有机碳的稳定性及温度敏感性期刊:Soil Biology & BiochemistryIF:10.3发表日期:2025年9月3日BAIHUI ORGANISMS作者简介第一作者:陈雅兰,北京师范大学环境学院励耘博士后,师从孙可教授。主要从事生物炭环境地球化学行为及环境效应的研究。以第一作者在GCB、SBB、EST、CEE等期刊上发表学术论文19篇(含共一3篇),1篇封面文章,1篇入选ESI高被引论文,引用800次,H指数17。主持国家自然科学基金青年项目、博士后基金站中特别资助、博士后基金面上项目。曾获宝钢优秀学生特等奖、北京市优秀毕业生、北师大优秀博士学位论文等荣誉。通讯作者:孙可,北京师范大学环境学院教授、博士生导师,国家杰出青年基金、国家优秀青年科学基金和北京市杰出青年基金获得者。主要从事生物炭环境地球化学行为及环境效应的研究。在GCB、SBB、EST等期刊上发表高质量SCI论文130余篇,他引7000余次,H指数51,5篇论文入选ESI高引论文。高群,北京师范大学环境学院副教授,主要从事土壤微生物学研究。相关研究成果在PNAS、Nature Communications(2篇)等国际期刊发表高质量SCI论文40篇,引用1200余次,H指数21。授权国家专利2项。荣获中国微生物生态青年科技创新优秀奖,入选中国科协青年人才托举工程及中国科协“未来女科学家计划”。01背景土壤有机碳(SOC)的温度敏感性(Q10)是调控土壤-气候反馈的关键...
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
  • 点击次数: 0
    2025 - 09 - 04
    更多检测相关讯息搜栢晖生物了解更多~
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务