028-8525-3068
新闻动态 News
News 技术交流

客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

日期: 2024-06-17
标签:
文献解读

 名:Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon

译 名:盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

期 刊:Science Bulletin

IF:18.9

发表日期:2024.5.18

第一作者:Lin Chen



01
摘要
客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

盐碱地是应对全球气候变化和保障粮食安全的重要耕地储备资源,部分原因是它可以储存大量的碳(C)。目前尚不清楚盐碱土地复垦(将盐碱土地转化为耕地)如何影响土壤碳储存。本研究结果表明,与盐碱地相比,盐碱地复垦显著增加了植物来源的碳积累和植物来源的碳与微生物来源的碳比率,导致植物源碳成为SOC储量的主要贡献者,POC封存和MAOC封存分别与盐碱复垦引起的植物和微生物来源的碳积累密切相关,即盐碱地复垦通过优先促进植物来源的碳积累来增加表层土壤中的碳储存量。


02
引言
客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

土壤盐碱化使全球土壤(0-30cm)SOC储量减少了3.47t ha−1。利用土壤修复技术可以有效地逆转这一现象。在农业生态系统中,微生物残体(特别是真菌残体)优先聚集土壤的POC部分。植物和微生物源碳与POC和MAOC含量之间的关系以及植物和微生物来源的碳对盐碱条件下SOC储存的贡献知之甚少。

两个公认的生物标志物(木质素酚和氨基糖)已被广泛用于估计植物衍生木质素残体和微生物残体对SOC库的贡献。因此,我们分别使用木质素酚和氨基糖作为植物和微生物残体碳的表征。本研究的目的是(i)量化盐碱土地复垦对表层土壤碳储量的影响,确定影响碳储量的关键因素;(ii)评估植物和微生物来源的碳与POC和MAOC池之间的关系,以及植物和微生物来源的碳对中国主要盐碱区SOC储存的贡献。

客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

盐碱地复垦对中国主要盐碱区表层土壤碳储量的影响示意图。每个饼图的大小与土壤有机碳(SOC)密度成正比“other”表示土壤有机碳分异过程中流失的土壤碳。箭头表示碳的分配和积累过程,每个箭头的大小反映了过程的强度。盐碱地复垦(1)对土壤无机碳(SIC)储量的影响不一致,主要是通过引起有机碳积累来增加土壤中碳的储量(2)减少植物源碳的微生物转化,导致植物源碳成为有机碳储存的主要贡献者(3)通过促进植物源碳和微生物源碳的积累,增加颗粒有机碳(POC)和矿物结合有机碳(MAOC)库。


03
主要结果
客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

1. 土壤无机碳密度和有机碳密度

栽培土壤和盐碱土壤的SIC密度差异不一致。松嫩平原栽培土壤的SIC密度低于盐碱土壤,河套平原栽培土壤的SIC密度高于盐碱土壤,东部沿海和西北干旱地区的栽培土壤和盐碱土壤的SIC密度相似(图2a)。松嫩平原、东部沿海地区、河套平原和西北干旱区栽培土壤的SOC密度分别比盐碱土壤高14.51、12.64、12.50和7.65 t ha−1(均为p < 0.001;图2a)。栽培土壤对土壤总碳密度的贡献明显高于盐碱土壤(图2a)。除西北干旱地区外,其他区域栽培土壤中POC储量和MAOC储量均大于盐碱土壤(几乎所有p < 0.001;图2b)。松嫩平原和东部沿海地区的栽培土壤的POC/MAOC比值高于盐碱土壤(图2b)。

客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

图2.四个盐碱区的土壤碳储量:(a)土壤总碳(STC)、无机碳(SIC)和有机碳(SOC)密度,松嫩平原、东部沿海地区、河套平原和西北干旱地区盐碱土壤和栽培土壤(b)颗粒有机碳(POC)、矿物结合有机碳(MAOC)密度和POC/MAOC。


2.土壤碳密度与环境因子的关系

分层划分分析表明,经度和土壤改良指数分别解释了所有盐碱土壤无机碳和有机碳(特别是SOC和POC)密度的大量变化(图S3a)。土壤因素解释了盐碱土壤SOC、POC和MAOC密度变化的25.7%–40.1%(图S3b)。除西北干旱区的POC和MAOC密度外,每个盐碱区的碳密度变化比例较小,主要由气候和地理因素解释(图S4a-h)。随机森林模型表明,土壤改良指数可以很好地预测每个盐碱区的SOC、POC和MAOC密度(图S5)。


3.植物和微生物源碳积累

各地区栽培土壤中储存的植物源碳均高于盐碱土壤(差异为4.50-7.47t ha−1),除东部沿海地区土壤外,各区域栽培土壤中储存的微生物源碳高于盐碱土壤(图3a)。栽培土壤的植物源碳与微生物源碳比值高于盐碱土壤(图3a)。除西北干旱地区外,栽培土壤的肉桂基与香兰素和丁香基与香草醛的比例高于盐碱土壤,这表明栽培土壤中的木质素降解比盐碱土壤少(图3b)。而西北干旱地区的丁香酚和香叶酚的酸醛比低于西北干旱地区的盐碱土壤,表明栽培土壤的木质素氧化程度低于西北干旱地区的土壤(图3c)。将每个化合物浓度归一化为SOC含量,以反映化合物对SOC含量的相对贡献。

客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

图3.植物和微生物源C在四个盐碱区的积累。(a)植物和微生物源碳密度、植物源碳:微生物源碳,(b)肉桂基和香草基(C:V)和丁香基和香草基的(S:V)比值,(c)盐碱土壤和栽培土壤松嫩平原,东部沿海地区,河套平原和西北干旱地区丁香基和香草基的酸醛比。较高的C:V或S:V比率表明木质素降解越少,较低的酸醛比值(Ac:Als) 和(Ac:Alv) 表明木质素氧化越少。


4.植物和微生物源碳的积累与有机碳密度相关性

SOC和POC密度(p < 0.01)与所有盐碱区的植物源C指标呈显著相关(图4)。在每个盐碱区域中,POC密度与大多数植物源C(而不是微生物源C指标)之间存在显著相关性(图4)。结构方程模型表明,SOC储量与POC储量和MAOC储量也是显著相关(p<0.001),这两种储量分别与松嫩平原、河套平原和西北干旱区盐碱地复垦引起的植物和微生物源的碳积累密切相关(图5a-d)。

客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量

图4.所有盐碱区和每个盐碱区的土壤有机碳SOC)、颗粒有机碳(POC)和矿物结合有机碳(MAOC)密度与植物和微生物源的碳指标之间的皮尔曼相关性。颜色表示相关系数,*和**分别表示在概率水平为0.05和0.01处的显著相关性。


客户文章(IF:18.9)|盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量


图5.将土壤碳储存与植物和微生物衍生的碳积累联系起来。结构方程模型揭示了(a) 松嫩平原、(b)东部沿海地区、(c)河套平原和(d)西北干旱地区的盐碱地开垦、植物和微生物源碳积累和有机碳储存之间的直接和间接关系。实心箭头表示显著的正相关关系,箭头的宽度与这些关系的强度成正比。箭头旁边的数字是标准化的路径系数。植物和微生物源碳的积累以相关的观察变量为特征,有机碳密度是相应的碳储存的代表。盐碱地复垦引起的变量显著增加或减少用灰色箭头标记。


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
  • 点击次数: 0
    2025 - 04 - 29
    01按照土壤碳的形态分类(1)有机碳 • 总有机碳:土壤中所有来源的有机碳总量。 • 可溶性有机碳:可溶于水的有机碳,影响土壤碳循环的活性部分。 • 颗粒态有机碳:粒径通常在53 μm–2 mm之间的有机碳,较易分解。 • 矿物结合有机碳:与矿物颗粒结合的有机碳,较为稳定。 • 轻组有机碳:通过浮选法分离出的轻组有机碳,主要由未完全分解的有机质组成。 • 重组有机碳:通过浮选法分离出的重组有机碳,主要由金属氧化物结合的有机质组成。 • 微生物生物量碳:土壤微生物体内的碳,是活性有机碳的一部分。 • 易氧化碳:能被高锰酸钾氧化的有机碳,表征活性有机碳库。(2)无机碳 • 总无机碳:土壤中的所有无机碳总量。 • 碳酸盐碳:主要以方解石(CaCO₃)、白云石(CaMg(CO₃)₂)等矿物形式存在。 • 碳酸氢盐碳:土壤溶液中的可溶性无机碳,易随水流失。02按碳库的稳定性分类 • 活性有机碳库:周转快,易受环境变化影响,包括DOC、MBC、POC等。 • 慢性有机碳库:周转较慢,部分矿物结合的有机碳属于此类。 • 惰性有机碳库:高度稳定,如腐殖质碳、黑碳。03按土壤深度分布分类 • 表层土壤碳( 0–30 cm):主要受植被、微生物和人为活动影响。 • 深层土壤碳(30 cm):稳定性较高,受矿物结合和碳迁移过程影响。04按来源分类 • 植被来源碳:枯落物、根系分泌物、植物残体分解产生的碳。 • 微生物来源碳:微生物代谢及死亡后残留的碳。 • 外源输入碳:施肥、污染物沉降等外部输入的碳。这些指标可以用于研究土壤碳循环、碳固存、农业土壤管理等问题。在实际研究中,通常结合稳定同位素分析、核磁共振(N...
  • 点击次数: 0
    2025 - 04 - 09
    铁氧化物结合态有机碳在土壤碳汇和碳稳定方面有重要意义,尤其在全球气候变化和土壤碳库管理背景下,越来越受关注。但仍然存在不少研究空白。今天我们通过ChatGPT和DeepSeek两大AI平台分析一下在该领域尚未被充分研究的热点问题和潜在研究方向~一、ChatGPT分析结果01铁氧化物结合态有机碳的稳定性机制与动态过程研究方向: • 原位监测 Fe-OC 在周期性湿润/干燥条件下的稳定性。 • 利用同位素示踪和光谱技术揭示铁矿物转化(非晶态铁 → 晶态铁)对有机碳稳定的影响。研究意义:• 理解铁氧化物在不同氧化还原条件下如何稳定或释放碳,有助于预测湿地、稻田等环境下土壤碳库的动态变化,进而对碳循环建模和气候变化预测有指导意义。02铁-有机复合物中有机碳的分子特征与来源研究方向: • 利用高分辨率质谱(FTICR-MS)、X射线吸收精细结构光谱(XAFS) 等先进技术分析 Fe-OC 复合物中的有机分子组成。 • 比较不同土壤类型或植被类型下 Fe-OC 结合的有机碳来源差异。研究意义:• 搞清楚什么样的有机碳更容易与铁矿物结合,有助于优化土壤管理策略,促进碳固定,提高土壤碳汇功能。03微生物在铁氧化物-有机碳互作中的作用机制研究方向: • 研究不同功能群微生物(铁还原菌、铁氧化菌)在 Fe-OC 动态中的角色。 • 解析微生物胞外多糖(EPS)、胞外电子传递对 Fe-OC 形成和解离的影响。研究意义:• 微生物过程是土壤碳稳定的关键环节,揭示微生物与 Fe-OC 的交互机制,有助于发展基于微生物调控的土壤碳汇增强技术。04土地利用变化和管理措施对 Fe-OC 储量与稳定性的影响研究方向: • 比较不同土地利用类...
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务