028-8525-3068
新闻动态 News
News 行业新闻

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

日期: 2023-02-08
标签:


文献解读

原名:Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests

译名:在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

期刊:New Phytologis

IF:10.768

发表时间:2019.4

第一作者:Adrienne B. Keller



摘要

虽然对凋落物分解的主要影响机制已经很好地建立起来,但缺乏一个框架来预测生态系统内部和跨生态系统凋落物腐烂的种间差异。鉴于先前的研究将树木菌根与碳和营养动态联系起来,研究假设森林中的两种主要菌根群丛枝菌根(AM)和外生菌根(ECM)真菌在凋落物分解率上有所不同。实验收集了温带和热带/亚热带地区AM和ECM相关被子植物和裸子植物(> 200种)的凋落物化学和腐烂数据,并研究了凋落物腐烂速率、菌根关联、系统发育和气候之间的关系。在温带森林中,AM凋落物比ECM凋落物腐烂更快,凋落物含氮量和系统发育最能解释凋落物腐烂的变化在亚热带森林中,不同菌根组凋落物腐烂率无显著差异,凋落物腐烂率的变化主要由凋落物中的磷引起。研究结果表明,对树木菌根关联的认识可以提高物种对生态系统过程影响的预测,特别是在AM和ECM物种通常同时出现的温带森林,为森林凋落物质量、有机质动态和养分获取之间的联系提供了一个预测框架。


研究背景

植物凋落物分解是连接植物和微生物群落的基本过程,能有效耦合所有陆地生态系统中的碳(C)和养分循环。凋落物分解速率决定了腐烂植物组织中损失的营养物质多快能被生物吸收,从而决定了生态系统C循环和营养物质的储存和损失。同样,凋落物分解是确定养分有效性对植物竞争和群落结构的影响程度的重要过程。尽管几十年的研究已经阐明了影响凋落叶分解率的三个主要控制因素——气候、基质质量和土壤性质,但仍缺乏一个框架来整合这些因素来预测生态系统内部及之间的凋落叶腐烂率。这也阻碍预测物种的增减如何影响生态系统功能、生态系统服务和C循环对气候变化的反馈。

植物功能性状在本质上是相关联的,反映了由植物生理和环境控制形成的生态进化权衡。因此,在考虑复杂的动态过程(如凋落物分解)时,功能性状方法可能特别有用。一种正在引起人们兴趣的植物功能特征是菌根关联。超过90%的植物与单一类型的菌根真菌有关,每个菌根组的植物物种的优势已经被假设来反映和决定生态系统的养分循环,这是由于不同群体间植物性状和土壤性质的差异。对于森林树木,两种主要的真菌类型是丛枝菌根(AM)和外生菌根(ECM)真菌。据研究,AM和ECM相关树种在养分利用性状上存在差异,这反过来又与AM和ECM主导的生态系统中土壤C:氮(N)比、微生物丰度和活性以及N转化率的变化有关。尽管这种模式在温带和热带森林中普遍存在,但对导致这些动态的因素了解有限。

一种假说是AM和ECM树种的凋落物腐烂率的差异导致了两种菌根类型之间养分循环的差异。凋落叶腐烂的差异能够影响初级生产、养分保留和土壤有机质储存等生态系统过程。多项研究报告表明AM凋落物比ECM凋落物腐烂得更快,这与菌根群如何影响土壤C和N动态的理论是一致的。相对于ECM凋落物,许多AM树种的凋落叶木质素:N(凋落物腐烂率的表征)较低,而且腐烂率更快,特别是在它们的原本土壤中腐烂时。实验室培养研究也表明了AM凋落物相对于ECM凋落物的根和叶凋落物的腐烂速度更快。此外,当AM和ECM凋落物在同一土壤中腐烂,从而将凋落物化学效应与土壤基质性质隔离开来时,AM凋落物的腐烂速度始终快于ECM凋落物。因此,有令人信服的证据表明,在选定的森林中,不同菌根群的凋落物腐烂率可能不同。这种模式在生物群落内和整个生物群落中有多普遍还有待验证。

迄今为止,大多数关于AM和ECM树凋落物差异的研究都集中在相对狭窄的物种集合上,因此,在系统发育中菌根群效应的普遍性仍然缺乏验证。分解实验包括在同一土壤中混合AM和ECM凋落叶,可以通过纳入每个菌根类的更多物种多样性来应对这一挑战,但不能解释植物物种和相关微生物如何随着时间的推移影响土壤基质,并加强土壤性质的现有差异。鉴于生物群落中土壤性质、气候因素和物种分布的显著差异,菌根群效应可能随着纬度的不同而不同,因此有必要对菌根群对凋落物腐烂模式的影响进行跨生物群落分析。

为了解决这个问题,研究收集了温带和亚热带森林中大于200个AM和ECM树种的凋落物化学和分解率。研究假设AM凋落叶比ECM凋落叶分解更快。此外,研究假设不同菌根类型在凋落物分解方面的差异在中纬度地区比在高纬度或低纬度地区更大,在高纬度地区,气候对凋落物腐烂率的控制被认为更强。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

1数据集所包含的落叶腐烂率(k)的全球分布。


主要结果

1.菌根类群对凋落物腐烂率的影响

与预测一致,在温带森林中,AM凋落叶比ECM凋落叶分解得更快(P<0.001;图2a)。相比之下,在亚热带森林中,不同菌根组的凋落物腐烂率没有显著差异(图2b)。在温带和亚热带森林中,系统发育广义最小二乘分析表明,am凋落物和ecm凋落物凋落物腐烂率的大部分变化是由物种的系统发育相关性驱动的(系统发育方差分析,p>0.05)。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

2 (a)温带生物群落(23.5 ~ 55°纬度绝对值)丛枝菌根(AM)和外生菌根(ECM)相关树木凋落叶腐烂率(k);(b)亚热带生物群落(0-23.5°纬度绝对值)


2.气候和菌根类群对凋落物腐烂率的影响

年平均气温和MAP均与凋落物k呈正相关(图3),而PET不影响凋落物k(数据未显示)。MAT和菌根组共同解释了全球凋落物k总变异的22%(调整后r2= 0.22, P<0.001)(图3a),与AM凋落物相比,ECM凋落物的凋落物k对MAT增加的反应略强(即陡坡)(MAT和菌根组相互作用,P<0.001)。与MAT相比,MAP对数据集凋落物k总变异的解释略低(调整后r2= 0.17, P=0.02)(图3b)。这是MAP与菌根组之间强相互作用的结果(MAP与菌根组相互作用,P< 0.001),ECM凋落物腐烂率对MAP有强烈的正向反应,而AM凋落物k对MAP不太敏感。在非常潮湿的地区,AM凋落物对MAP的弱响应部分是由凋落物k的变化引起的,在这些地区,数据集中明显没有观察到ECM凋落物的腐烂;然而,在排除MAP超过3000mm yr-1的站点的凋落物k观测后MAP和菌根组间相互作用仍显著(P<0.001)。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

3与丛枝菌根(AM)和外生菌根(ECM)相关的凋落物腐烂率(k)记录(对数转换)的全球关系:(a)年平均温度(MAT);(b)年平均降水量。


3.凋落物化学组成和菌根类群对凋落物k的影响

对于该研究数据集的子集,包括给定凋落物的凋落物化学组成和凋落物k数据,研究了凋落物化学组成如何很好地预测菌根类群之间观察到的凋落物k差异。在温带森林凋落物化学组成变化中,凋落物N(%)是凋落物k的最佳预测因子。AM凋落物腐烂率与凋落物的N呈极显著正相关(r2= 0.38, P<0.001),ECM凋落物的N与凋落物的k相关性较弱(r2= 0.05, P<0.001)(图4a)。在温带森林中,AM和ECM凋落物的凋落物N无显著差异,而在亚/热带森林中,AM凋落物的凋落物N平均低于ECM凋落物(P =0.03)。同时,在亚热带森林中,凋落物P是AM和ECM凋落物k的最佳凋落物化学预测因子(r2=0.19, P<0.001)(图4b)。ECM凋落物P在温带森林(P=0.08)和亚热带森林(P=0.07)均略高。最后,在比较菌根组内生物群落差异时,发现亚/热带森林AM和ECM凋落物N值均高于温带森林(AM,P=0.076;ECM,P=0.002)。AM树种和ECM树种与凋落物P无明显差异。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

4温带森林丛枝菌根(AM)和外生菌根(ECM)树种的初始凋落物氮百分比(% N)与凋落物腐烂率(k)的关系(a);亚热带森林AMECM树种的初始凋落物磷百分比(% P)与凋落物k的关系(b)


结论

在这里,研究表明,在温带森林中,不同菌根组的凋落物k不同,在低纬度地区的影响较弱

综上所述,认为凋落物质量和局部分解物基质的特性协同作用,导致凋落物k中生物群系特异性菌根群差异。在温带森林中,低质量的凋落物分解和释放养分缓慢,导致土壤养分有效性低,C:养分比高。这反过来又形成了一个代谢率低的分解者群落,能够获得低质量的基质。如果低土壤养分有效性提高了叶片吸收效率,进一步降低了凋落物养分浓度,并加强了低养分环境中植物凋落物缓慢的分解,则这种植物-土壤-微生物正反馈循环可能会进一步放大。植物凋落物特征、土壤肥力和分解者群落之间的这种共变异突出了将菌根关联视为一种综合特征的效用,它具有预测物种对生态系统过程(如凋落物分解)的特定影响的能力。这些菌根群综合征在低纬度森林中减弱甚至逆转的程度值得进一步研究。随着环境变化迫使森林植物群落组成发生大规模变化,需要采用这样的功能方法来提高物种对生态系统功能的影响,从树木到林分和生态系统规模,以及更好地预测植物群落和气候周期之间的反馈。

论文id:https://doi.org/10.1111/nph.15524

END

栢晖生物 

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼14层

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同




  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
  • 点击次数: 0
    2025 - 04 - 29
    01按照土壤碳的形态分类(1)有机碳 • 总有机碳:土壤中所有来源的有机碳总量。 • 可溶性有机碳:可溶于水的有机碳,影响土壤碳循环的活性部分。 • 颗粒态有机碳:粒径通常在53 μm–2 mm之间的有机碳,较易分解。 • 矿物结合有机碳:与矿物颗粒结合的有机碳,较为稳定。 • 轻组有机碳:通过浮选法分离出的轻组有机碳,主要由未完全分解的有机质组成。 • 重组有机碳:通过浮选法分离出的重组有机碳,主要由金属氧化物结合的有机质组成。 • 微生物生物量碳:土壤微生物体内的碳,是活性有机碳的一部分。 • 易氧化碳:能被高锰酸钾氧化的有机碳,表征活性有机碳库。(2)无机碳 • 总无机碳:土壤中的所有无机碳总量。 • 碳酸盐碳:主要以方解石(CaCO₃)、白云石(CaMg(CO₃)₂)等矿物形式存在。 • 碳酸氢盐碳:土壤溶液中的可溶性无机碳,易随水流失。02按碳库的稳定性分类 • 活性有机碳库:周转快,易受环境变化影响,包括DOC、MBC、POC等。 • 慢性有机碳库:周转较慢,部分矿物结合的有机碳属于此类。 • 惰性有机碳库:高度稳定,如腐殖质碳、黑碳。03按土壤深度分布分类 • 表层土壤碳( 0–30 cm):主要受植被、微生物和人为活动影响。 • 深层土壤碳(30 cm):稳定性较高,受矿物结合和碳迁移过程影响。04按来源分类 • 植被来源碳:枯落物、根系分泌物、植物残体分解产生的碳。 • 微生物来源碳:微生物代谢及死亡后残留的碳。 • 外源输入碳:施肥、污染物沉降等外部输入的碳。这些指标可以用于研究土壤碳循环、碳固存、农业土壤管理等问题。在实际研究中,通常结合稳定同位素分析、核磁共振(N...
  • 点击次数: 0
    2025 - 04 - 09
    铁氧化物结合态有机碳在土壤碳汇和碳稳定方面有重要意义,尤其在全球气候变化和土壤碳库管理背景下,越来越受关注。但仍然存在不少研究空白。今天我们通过ChatGPT和DeepSeek两大AI平台分析一下在该领域尚未被充分研究的热点问题和潜在研究方向~一、ChatGPT分析结果01铁氧化物结合态有机碳的稳定性机制与动态过程研究方向: • 原位监测 Fe-OC 在周期性湿润/干燥条件下的稳定性。 • 利用同位素示踪和光谱技术揭示铁矿物转化(非晶态铁 → 晶态铁)对有机碳稳定的影响。研究意义:• 理解铁氧化物在不同氧化还原条件下如何稳定或释放碳,有助于预测湿地、稻田等环境下土壤碳库的动态变化,进而对碳循环建模和气候变化预测有指导意义。02铁-有机复合物中有机碳的分子特征与来源研究方向: • 利用高分辨率质谱(FTICR-MS)、X射线吸收精细结构光谱(XAFS) 等先进技术分析 Fe-OC 复合物中的有机分子组成。 • 比较不同土壤类型或植被类型下 Fe-OC 结合的有机碳来源差异。研究意义:• 搞清楚什么样的有机碳更容易与铁矿物结合,有助于优化土壤管理策略,促进碳固定,提高土壤碳汇功能。03微生物在铁氧化物-有机碳互作中的作用机制研究方向: • 研究不同功能群微生物(铁还原菌、铁氧化菌)在 Fe-OC 动态中的角色。 • 解析微生物胞外多糖(EPS)、胞外电子传递对 Fe-OC 形成和解离的影响。研究意义:• 微生物过程是土壤碳稳定的关键环节,揭示微生物与 Fe-OC 的交互机制,有助于发展基于微生物调控的土壤碳汇增强技术。04土地利用变化和管理措施对 Fe-OC 储量与稳定性的影响研究方向: • 比较不同土地利用类...
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务