028-8525-3068
新闻动态 News
News 行业新闻

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

日期: 2025-01-09
标签:

文献解读

原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions

译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源

期刊:SBB

IF:9.8

发表时间:2023.07

第一作者:Zhichao Zou

摘要

背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。

方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。

结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(<20)。施肥使POM和MAOM中软木脂源脂类分别降低56%和30%,但使木质素来源酚类分别增加74%和31%,表明作物残体更偏好在POM中固存。施肥降低了两种组分中微生物残体对SOC的贡献。总之,矿质施肥矿质施肥会降低POM中某些可溶性组分(例如,短链脂类),导致MAOM中难分解分子的积累(例如,长链脂类,角质源脂类和木质素来源酚类)。

结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。

研究背景

SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集约型农业中,矿质施肥使增加或维持作物产量的关键。养分介导的SOC积累主要与2方面有关,1)通过增加凋落物和根沉积物介导更高的植物输入;2)抑制微生物代谢和/或微生物生物量,并且改变了微生物群落结构。矿质施肥导致的SOC积累也可能被不同土壤组分的C损失或土壤C的生物降解所抵消,导致零积累,甚至负积累。此外,矿质肥料的输入可能通过植物输入、分配途径和分解,改变SOM形成和稳定,并且影响SOM的分子组成和来源。除了施肥对SOC库影响的差异化结果外,很少有研究关注矿质施肥对SOM质量的影响(比如,分子、不稳定性和来源)

研究SOC的分子组成有利于揭示SOM来源和分解途径,因此提高对SOM不稳定性和稳定性的评估。新兴的观点表明,SOM是一个逐级分解的有机化合物的连续体,具有不同阶段的生物地球化学降解过程。这种复杂的混合物(有机质)由一系列的生物分子组成,如多糖、脂质、木质素、角质、软木脂和氨基糖。生物标志物的方法已被证明是分析SOM的一个强大的工具。例如,氨基糖和木质素生物标志物被用于差异化的指示微生物和植物源生物分子。此外,自由基长链脂类(≥C20)和类固醇被认为主要是植物源,而短链脂类()和海藻糖主要是微生物源。结合脂质,如角质和软木脂,是具有植物特征的生物大分子,分别用于追踪来自叶和根的输入。然而,大量研究集中在自然生态系统中养分输入(大部分是N)的影响上,并且发现N输入能够改变这些SOM组分和来源。例如长期N肥增加了温带森林和草地的植物源脂类(例如,steroids(类固醇)、cutin(角质)、suberin(木栓质))和木质素酚。然而,不确定性仍然存在,因为某些组分(如微生物残留物)对施肥的反应不一致。据推测,这些不同的结果可能是由于肥料类型、添加率、持续时间、土壤类型、土壤特性、生态系统和气候区域的差异导致的。然而很少有研究探究农田土壤中,SOM的分子组成,来源和稳定性对矿质施肥的响应,这些尤为重要,因为考虑到更大的化肥输入,更高的扰动率,更低的SOC水平,并且越来越大的义务在土壤中储存更多的C以缓解气候变化

SOM通常可以被划分为POM和MAOM。这两个可操作组分在形成、稳定和功能上存在本质的区别。这些组分内的差异强调了我们需要分别量化和描述POM和MAOM。越来越多的证据表明,土壤和作物管理时间会改变SOM功能组分中数量和组成。

目前还没有研究的报道农田土壤中POM和MAOM组分中SOM分子组成和来源对长期矿质施肥的响应。在本研究中,我们结合了几个关键的分子水平分子标志技术,以阐明农田POM和MAOM功能组分的命运、分解和来源对十年矿质施肥的响应。我们假设:1)矿质施肥添加将增加SOM的数量和木质素来源酚类,而降低微生物残体(由于刺激了微生物残体的分解);2)养分介导SOM组成和来源的变化在POM和MAOM组分中存在差异,其中POM将富集植物源SOM,而MAOM将积累微生物源残体。

主要结果

1. 全土和SOC组分的SOC和TN

MAOM组分在颗粒分布中主导(总回收质量>60%),并且施肥导致MAOM质量增加14%(1a)。大部分SOC集中于MAOM组分(约90%),其中与对照相比,矿质施肥使MAOM组分中SOC增加25%。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图1 矿物施肥对POM和MAOM组分质量比例(a)和SOC的影响。

2. POM和MAOM组分中游离脂类化合物

对于POM组分,施肥导致短链N-烷烃和N-烷醇降低50%和57%,但使植物源类固醇(即菜油甾醇、豆甾醇和谷甾醇增加46.6%。施肥增加了MAOM组分中长链(≥C20)脂肪族脂质的浓度(正烷烃增加了93%,正烷醇增加了156%,正烷酸增加了161%),但减少了短链()正烷烃和正烷醇的浓度,分别减少了50%和57%(表1)。使用了几种分子指标来评估游离脂质的来源和降解状态(图S1)。总体而言,正烷烃的平均链长(ACLAlk)和正烷酸的平均链长(ACLFa)分别在26.4到27.7和16.6到16.9之间变化(图S1a和c)。与对照组相比,施肥处理在POM组分中的ACLAlk高于MAOM组分(图S1a;p < 0.01)。此外,施用矿物肥料增加了POM组分中的OEPAlk和EOPFa(图S1b和d;p < 0.001)。

3. POM和MAOM组分中的结合脂质

施用矿物肥料使POM组分中的栓皮质衍生脂质浓度降低了52%,MAOM组分中降低了30%(表1;p < 0.05),而施肥对POM和MAOM组分中的角质衍生成分没有影响。在POM组分中,角质和/或栓皮质衍生脂质(ΣS˅C;ΣS^C)在施肥处理下的相对含量低于对照组,而在MAOM组分中则没有这种差异(表1)。施用矿物肥料显著降低了POM组分中的栓皮质/角质比值(图S2a;p < 0.05)。POM组分中的ω-C18/ΣC18比值在施肥处理中高于对照处理(图S2b;p < 0.05)。POM组分中的ω-C16/ΣC16比值在施用矿物肥料后低于未施肥对照(图S2c)。此外,施肥导致POM组分中的Σmid/ΣS^C比值高于对照(图S2d)。

4. POM和MAOM组分中的木质素衍生酚

施用矿物肥料增加了POM和MAOM组分中特定和总的木质素衍生酚(图2;表1)。具体来说,施肥(与对照相比)处理使POM和MAOM组分中的总木质素衍生酚浓度分别增加了74%和31%(图2;表1)。木质素氧化比值,以(Ad/Al)V和(Ad/Al)S表示,在两种施肥处理之间相似(图S3)。然而,在特定处理中,POM组分的(Ad/Al)V值高于MAOM组分,而POM和MAOM组分之间的(Ad/Al)S比值则呈现出相反的趋势(图S3)。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图2 对照相比,矿质施肥对整体土壤、POM组分和MAOM组分的多种可提取生物标志物的影响

表1 POM和MAOM组分中SOM组分的浓度

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

5. POM和MAOM组分中中氨基糖和微生物残体

对照矿质施肥改变了两种组分中某特定氨基糖浓度(比如,葡萄糖胺、甘露糖胺、半乳糖胺和胞壁酸)(图2;表1)。施肥使一些氨基糖(除甘露糖胺)和总氨基糖降低31-37%,但是这些变化在MAOM组分中不显著。我们也发现两种组分中真菌和细菌MRC变化(图3)。具体来讲,矿质施肥使POM中细菌MRC降低37%,然而MAOM组分中施肥未导致MRC显著差异。施肥降低了POM中细菌MRC及其对SOC的贡献(图3a和d),并且MAOM组分中真菌MRC和总MRC对SOC的贡献与之趋势一致。在所有处理中,POM组分具有比MAOM更高的细菌MRC、真菌MRC和总MRC占SOC的比例。此外,矿质施肥导致MAOM中细菌MRC高于POM,即使施肥处理和CK间差异不显著。施肥降低了POM中细菌MRC/真菌MRC(B/F),而MAOM中这一差异不显著,此外这一比值在POM中显著高于MAOM。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图3 矿质施肥影响的细菌、真菌及其微生物残体碳(MRC)对POM和MAOM组分中SOC积累的贡献

6. POM和MAOM组分中SOM化合物和标志物

B/F、(Ad/Al)V、ω-C18/ΣC18和 ACLFa 沿PC1有更高的负载荷得分,而 EOPFa、ACLFa、ω-C16/ΣC16、ω-C18/ΣC18和角质/栓皮质有更高的正载荷得分。POM中对照处理在ω-C16/ΣC16和ω-C18/ΣC18上存在差异,而施肥处理在Σmid/ΣS^C 和 ACLAlk存在显著差异。相反,在MAOM组分中,对照处理由AS、细菌MRC和总结合脂类改变,而施肥处理由VSC、总自由脂类、EOPFa和 OEPAlk改变。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图4 化合物和与降解相关指标之间的主成分分析(PCA)

十年施肥后,POM中植物源碳对SOC的贡献从38%增加到52%,在MAOM中从17%增加到21%,而微生物源碳对SOC的贡献在POM中从54%下降到38%,MAOM从11%-9%(图5)。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图5 植物(定量为木质素)、细菌和真菌源碳对SOC组分的贡献。

结论

1. 十年的矿质施肥改变了SOM的分子组成,而非数量。

2. 矿质施肥通过增加稳定性组分,从而提高了MAOM相关碳库,这有利于提高温带农业生态系统中SOC固存及其持久性。

更多土壤、植物、水气体检测so栢晖生物了解更多

土壤、植物酶活检测、氨基糖、PLFA及其同位素、磷组分、木质素酚、CUE、有机氮组分、有机酸、氨基酸、微生物量碳氮磷、同位素等、苯多羧酸、红外光谱、微生物多样性等指标的测定


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务