028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

日期: 2024-10-18
标签:
文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

栢晖

文献解读

原名:Canopy and understory nitrogen additions differently affect soil microbial residual carbon in a temperate forest

译名:林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

期刊:Global Change Biology

IF:10.8

发表日期:2024.7(网络首发2024.7)

第一作者:Yuanqi Chen,湖南科技大学


1

背景

对森林的研究主要集中在林下加氮对微生物和微生物残体的影响上,但对自然界氮沉积的主要途径——植物冠层氮沉积的影响还没有明确的探讨。本文研究了10年N添加量(25和50 kg N ha−1yr−1)和模式(冠层和林下)对温带阔叶林土壤微生物残体的影响。


2

假设

(1)N的添加减轻了微生物对N的限制,增加了土壤中微生物生物量和微生物残体碳;

(2)冠层氮的截留减少了直接进入土壤的氮量,所以林下N的添加对微生物残体的影响比冠层N的添加更强。


3

材料与方法

(1)本研究在中国河南省鸡公山国家级自然保护区大别山国家级森林生态系统野外观测研究站(北纬31°46′~ 31°52′,东经114°01′~ 114°06′)进行;


(2)共随机设4个区组。每个块包含5个处理:CT(对照,不添加氮素)、CN25 (25 kg N / ha−1yr−1冠层添加氮素,低氮)、CN50 (50 kg N /ha−1yr−1冠层添加氮素,高氮)、UN25 (25 kg N / ha−1yr−1林下添加氮素,低氮)和UN50 (50 kg N / ha−1yr−1林下添加氮素,高氮);


(3)施氮方式为NH4NO3溶液,4 ~ 10月每月施氮(每年7次)。为了增加树冠N,在每个地块的中心设置了一个35米高的塔,以支持洒水装置和抽水装置,将N溶液输送到森林树冠上(图1);


(4)2022年7月,对应施氮第10年,分别在0 ~ 10 cm和10 ~ 20 cm深度采集土壤样品,共40个样品;


(5)测定指标:pH、有机碳、全氮、全磷、磷脂脂肪酸、氨基糖。


文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

图1.正常处理中的三个喷撒系统。


4

结果

(1)在0~10 cm土层,无论添加方式如何,N的添加都使土壤pH降低;与CT相比,CN25、CN50和UN50土壤全氮浓度显著增加。在10~20 cm层,尽管土壤pH趋于较低,土壤有机碳和全磷浓度似乎较高(表1)。

表1.施氮第10年各处理土壤理化性质

文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同



(2)无论冠层还是林下模式,N添加对土壤微生物PLFA均无显著影响(表2),这表明微生物群落组成没有改变。此外,在60 d的孵育期内,N添加对有机碳矿化率没有影响(表3)。

表2.施氮量对土壤微生物生物量和群落组成的影响。

文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同


表3.N添加对整个育成期平均有机碳矿化率(mg CO2 kg−1 干土 d−1))的影响。

文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

(3)高N添加能显著提高0 ~ 10 cm土壤氨基糖浓度。在10~20 cm土层,CN50与CN25均显著提高了MurN浓度(图2)。高N添加增加了0~10 cm土壤的MRC,而在10~20 cm层,CN50显著提高了真菌MRC、细菌MRC和总MRC(图4b)。

文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

图2.各土层中氨基酸(MurN)、半乳糖胺(GalN)、葡萄糖胺(GluN)和总氨基糖(total AS)的浓度。


文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

图4.各土层土壤微生物残体C (MRC)及其对土壤有机C (SOC,%)的相对贡献。


(4)总氨基葡萄糖或GalN对SOC的相对贡献仅在0~10 cm土层中与AMF的PLFAs呈正相关,而与10~20 cm土壤中的任何研究参数无关(图5)。在0~10 cm土壤中,MRC(真菌、细菌总和)与土壤pH呈负相关,而与细菌、真菌、放线菌和总微生物的SOC、TN和PLFAs呈正相关。在10~20 cm层,MRC(真菌、细菌总和)与土壤pH值不显著相关,但与细菌、AMF、放线菌和总微生物的SOC、TN和PLFAs呈正相关(图5)。

文献解读| 林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同

图5.各土层中微生物残体与土壤理化性质之间的Pearson相关性


5

结论

(1)林下N添加可能低估了N沉积对MRC的影响,特别是在底土中,单独的微生物生物量不能准确预测N添加对微生物源C的影响;

(2)N添加对根沉积、微生物更替和微生物C利用效率的影响能从微生物角度揭示土壤C积累机制的关键过程。因此,有必要结合冠层氮吸收过程和微生物源性碳有效性来预测未来氮沉降速率情景下森林土壤碳动态。


更多检测相关讯息so栢晖生物了解~

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务