028-8525-3068
新闻动态 News
News 行业新闻

文献解读|土壤碳储量由颗粒和矿物结合有机质决定

日期: 2023-03-09
标签:
文献解读|土壤碳储量由颗粒和矿物结合有机质决定
点击上方”蓝字“关注我们吧


原名:Soil carbon storage informed by particulate and mineral-associated organic matter

译名:土壤碳储量由颗粒和矿物结合有机质决定

期刊:NATURE GEOSCIENCE

IF:21.531

发表时间:2019.11

第一作者:Francesca Cotrufo

文献解读|土壤碳储量由颗粒和矿物结合有机质决定

01
摘要

为缓解气候变化实行的有效陆地解决方案要求采取行动,能最大限度地提高土壤碳储量,同时不产生多余的氮。在土地管理的固碳工作中最常依据大量非根际土壤碳储量,而不考虑碳的储存形式、容量、持久性和氮需求。本研究中,介绍了欧洲范围内的数据库,包括土壤有机质物理分组,以确定大陆尺度森林和草地表层土壤碳和氮储量及其在矿物结合和颗粒有机物质之间的分布。草地和丛枝菌根林将更多的土壤碳储存在矿物结合有机碳中,这种有机碳更持久,有较高的氮需求,饱和程度也更高。

外生菌根森林将更多的碳储存在颗粒有机物中,这些物质更容易受到干扰,但对氮的需求更低,并可能无限积累。矿物结合有机质和颗粒有机质中碳的分配和碳氮比影响土壤碳储量,并介导其他变量对土壤碳储量的影响。了解矿物结合有机物与颗粒有机物中有机物质的物理分布可以为土地管理提供信息,以实现氮高效固碳,这由生态系统中固有的土壤碳容量和氮可用性驱动。

02

研究背景

根据不断增加的大气二氧化碳浓度对全球气候的影响制定有效的大气二氧化碳捕获策略。碳在土壤有机质的储存被认为是其中一种策略。它还可以带来重要的共同利益,如改善土壤健康和提供土壤服务。温带森林和草地土壤占据了广阔的土地面积,通过管理可以储存大量的碳。因此,这些策略可以在未来的土壤C管理中发挥关键作用。

土壤中的有机碳储存在无数种不同的化合物中,其中许多化合物含有氮,或通过需要氮的微生物活动形成。此外,与植物生物量相比,SOM每单位C需要更多的N。因此,土壤储存碳的能力与氮的有效性有关。提高土壤碳储量而不增加氮肥或在土壤中固定氮,从而影响植物生产力是土壤碳封存策略的主要挑战。土壤碳氮比被认为是土壤固C潜力的一个指标,土壤碳氮比高的系统能够在单位N上积累更多的C。根据这一逻辑,外生菌根系统比丛枝菌根系统具有更高的碳氮比,而具有更高的固C潜力。

然而,施氮量对土壤碳储量的影响仍存在争议,长期施氮会增加土壤碳储量,也会减少土壤碳储量。最近的研究表明,如果SOM被广泛地分为颗粒有机质(POM)和矿物结合有机质(MAOM),则可以更好地描述土壤C的积累、持久性和对N有效性的响应。POM主要来源于植物,含有许多氮含量低的结构碳化合物,通过固有的生化抗性、团聚体物理保护或微生物抑制作用在土壤中持续存在。MAOM主要由富含氮的微生物产物组成,由于与矿物质的化学键和小团聚体的物理保护,在土壤中持续存在。这两个组分可以通过大小或密度能进行解析分离,并在周转时间上表现出差异,POM更容易受到干扰,并且比MAOM循环更快。

03

主要结果

1.土壤有机碳和N储存

表层矿质土壤(0-20cm)有机碳和氮储量随地理位置和土地利用覆盖而变化(图1)。总体而言,与阔叶林和草地相比,混交林和针叶林的平均有机碳储量最高。纯草地平均氮蓄积量最高。然而,这些土地覆盖之间的差异也可能是由于森林表土(0-20cm)中土壤有机碳(OC)的比例(占其总OC储量的50%)普遍高于草地(42%)。

文献解读|土壤碳储量由颗粒和矿物结合有机质决定

1欧洲森林和草地表层矿质土(0-20 cm)土壤OC和N储量的地理分布

欧洲森林和草地表层矿质土壤C/N被较好的限制。总体土壤C/N平均值为15.0±6.5,处于世界土壤C/N平均值(9.9-25.8)的分布范围内。针叶林和混交林土壤的C/N最高,变化更大(分别为22.5±7.1和20.0±6.2),而阔叶林(13.8±4.0)和纯草地(11.0±2.1)的C/N比针叶林和混交林低,更多的被限制(图2),这表明它们的标准差较小。在所有土地利用类别中,土壤C/N比值随fMAOM的增加而降低,并随C/NPOMC/NMAOM的增加而增加(图2)。总体而言,MAOM的C/N(12.6±4.7)低于POM的C/N(22.1±14.9;图2)。尽管植物的碳氮比在不同的植物种类和植物器官以及在对环境压力的反应中存在很大差异,但土壤微生物的碳氮比较小,真菌的碳氮比通常在4.5-15之间,细菌的碳氮比在3-5之间。因此,POM主要由部分分解的植物材料组成,其C/N比MAOM的变化更大(图2),而MAOM的来源主要是微生物。因为木质输入具有高C/N和POM的持久性的特征,与草地相比森林土壤中C/N、POM和MAOM一般更高(图2)。在森林中,C/NMAOM超过了微生物的范围,这表明在这些系统中,植物源性OM对MAOM的贡献更高,可能是通过植物输入物的体外微生物转化或植物源性颗粒结构在小(<53μm)聚集物中的保护作用。

文献解读|土壤碳储量由颗粒和矿物结合有机质决定


      图2欧洲森林和草地表层矿质土(0-20 cm)土壤碳氮比


菌根组合的类型也可能是土壤C/N和fMAOM的重要驱动因素,因为它们自身组织的降解性不同,降解有机质和释放矿物N的能力也不同。ECM真菌通过产生水解酶,而丛枝菌根真菌依赖腐营养有机物的腐烂和矿物N的产生。然而,在植物经济谱的框架下,植物性状直接控制植物残体的分解,从而影响土壤中C和N的循环。植物性状与菌根关联可能存在相互联系,但两者与土壤C/N或碳储量之间是否存在因果关系仍是一个悬而未决的问题。

文献解读|土壤碳储量由颗粒和矿物结合有机质决定


图3菌根关联的SOM与C/N箱线图


因此,菌根对土壤有机质及其C/N比值的影响在同一土地覆被类别内具有较好的评价效果;阔叶林提供了这种机会,因为它们的树木既有外生菌根又有丛枝菌根。当需要比较存在菌根关联的阔叶林和混交林的土壤C/N、C/NPOMC/NMAOMfMAOM以及MAOM和POM中的C储量时,观察到AM土壤的C/N比ECM土壤平均低24%(图3)。这与C/NMAOM的减少和fMAOM的增加(图3)以及MAOM中整体较高的C储存有关。这些发现证实并概括了最近对微生物残留积累的观察,与以ECM为主的温带森林相比,AM主导的温带森林中MAOM的土壤氮含量更高,后者在POM中储存了更多的C。总体而言,ECM和AM阔叶林土壤之间的这些差异导致ECM土壤有机碳平均储量高于AM系统,与全球趋势一致。ECM森林可能会在有机土层中积累更多的POM,从而导致这些森林的土壤C总体上增加。

2.对土壤碳封存的影响

欧洲草地和森林土壤的平均土壤碳储量在46-84MgCha1之间,针叶林或混交林的土壤碳储量最高(图1)。事实上,在所有实验样地中,随着土壤总碳含量的增加,MAOM和POM组分的碳储量呈现不同的动态变化(图4)。在碳含量较低的土壤中,碳在MAOM中的储存占优势。然而,当它饱和时,额外的碳储存只能通过POM的累积来实现。在整个土壤有机碳范围内,草地系统的MAOM比例高于森林,POM比例低于森林,特别是与针叶林相比(图4)。由于碳饱和,土壤碳储量与fMAOM呈高度负相关(图5)。C/NMAOM与土壤碳储量呈极显著正相关,这可能是因为MAOM是SOM的主导库(即fMAOM>50%;图2),而令人惊讶的是,C/NPOM似乎不那么重要,与土壤C储量呈负相关(图5)。这一发现表明,在大陆尺度上,碳封存的N效率(封存一个单位C所需的N量)取决于MAOM和POM之间的分配,以及它们的C/N比。在欧洲草原和森林土壤中进行的另一项研究中,POM被认为是有机碳和氮的一个强有力的预测因子,表明这种主要来源于植物且相对脆弱的碳储存部分在这些生态系统中发挥着重要作用。除土地覆盖外,土壤因子(如土壤质地和pH值)通过影响fMAOMC/NMAOM来控制碳储量(图5)。值得注意的是,C/NMAOMpH、C/NMAOM与游粉尘呈负相关,这可能表明粗质酸性土壤中细菌来源的有机质对MAOM的贡献较低。



文献解读|土壤碳储量由颗粒和矿物结合有机质决定

图4 MAOM和POM中的土壤有机碳


文献解读|土壤碳储量由颗粒和矿物结合有机质决定


图5控制有机碳储量的结构方程模型


04

结论

实施土壤碳封存战略需要明确的、基于科学的指导方针,考虑特定地点的土壤和生态系统特性,包括SOM在MAOM和POM中的相对分布。在本研究中,发现草地中的碳封存是高度持续的,但由于MAOM-C在这些系统中的主导地位,因此需要大量的N饱和。因此,管理对于草地的碳收益应针对低于其饱和水平的土壤,这表明需要对土壤碳饱和赤字进行地理估计。然而,森林在积累土壤碳的方式上具有更大的可塑性,因为它们可以在持久性较弱和更脆弱的POM部分中储存更多的碳。土壤碳封存的造林应根据土壤性质(如粉砂和粘土含量、pH值)、碳亏缺和氮有效性进行设计,并应使用AM或ECM相关树种以最大限度地提高碳收益。

论文id:https://doi.org/10.1038/s41561-019-0484-6

# 栢晖 #

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼14层


文献解读|土壤碳储量由颗粒和矿物结合有机质决定




  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务