028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 在亚北极苔原,土壤有效磷含量随着海拔升高而降低

日期: 2022-05-19
标签:

原名:Bioavailable Soil Phosphorus Decreases with Increasing Elevation in a Subarctic Tundra Landscape

译名:在亚北极苔原,土壤有效磷含量随着海拔升高而降低

作者:Vincent,et al.

期刊:PLOS ONE

影响因子/分区:3.27/3区

发表时间:2014.03.27

一、关键词

海拔梯度,土壤P生物有效性,P组分,植被,气候


二、研究主题和背景

(1)背景:磷 (P) 是北极和亚北极苔原中的重要大量营养素,其生物有效性受有机磷的矿化调控。尽管不同土壤特性对植物群落影响可能不同,但温度可能对磷生物有效性起着重要的调控作用。

(2)主题:我们研究了瑞典北部的海拔梯度,其中包括所有海拔的荒地和草甸植被类型,以研究温度,土壤磷吸附能力以及草酸盐可提取的铝 (Alox) 和铁 (Feox) 对不同土壤P组分的浓度的影响。


三、科学问题或科学假说

(1)科学问题与海拔相关的温度变化对亚北极生态系统中磷有效性和生物地球化学有怎样的影响?

2科学假说:a.不论植被类型如何,活性P组分的浓度都随着海拔的升高(温度降低)而降低。b.草甸土壤活性P浓度更低,低于荒地,由于草甸的叶片N:P更高,同时其有较高浓度的AlFe以及较高的土壤磷吸附能力。通过解决这些假设,我们旨在更好地了解温度变化(例如气候变暖)如何影响亚北极苔原生态系统中两种主要植被类型的磷有效性。


四、材料与方法

(1)本研究是在位于瑞典北部阿比斯库东南约20公里处的 Suorooaivi 山(1193 米)的东北面斜坡(68°19 N, 18°49’9 E)。于2007年,设置六个海拔梯度(500m-1000m,间隔100m),分别建立4个重复地块,共48个。腐殖质土壤于 2009 年 8 月 4 日取样。在每个地块内,在田间对岩心进行筛分(2 mm 目)以使样品均质化,并结合以产生每个地块的单个散装样品。将样品密封在聚乙烯袋中,并在取样的同一天运送到实验室。从每个样品中,立即将一个子样品储存在 2°C (48 h)下,剩余部分在 -20°C 下冷冻。

(2)Hedley P组分:顺序浸提法;树脂可萃取的P组分-树脂态P;(2)有机和无机NaHCO3- P (以下分别称为 “Bic-po” 和 “Bic-pi”);(3)有机和无机NaOH可萃取P(分别称为 “NaOH-po” 和 “NaOH-pi”);(4)Hcl-P;(5)Res-P。

(3)吸附指数:单点P吸附方法来评估相对P吸附能力;比色法。

(4)提取物中P的测定:流动注射分析仪 (FIA) 分析。总土壤P计算为在Hedley分馏中测得的所有P分数的总和,有机磷浓度为总磷与无机磷浓度之差。

(5)无定型铝 (Al) 和铁 (Fe) 浓度是在用 0.2 M 酸性草酸盐 (C2H8N2O4) 萃取后测定的,pH 值调节至 3。

(6)数据分析:多元方差分析;单因素方差分析。我们使用Pearson相关性来测试Alox和Feox之间的关系; 线性回归用于测试土壤P级分与Alox Feox,吸附指数和温度之间的关系。


五、结果

(1)海拔梯度的影响

Residual-P 是所有海拔和植被类型,腐殖质中最丰富的 P 部分(占土壤总 P 的59-76%),其次是 NaOH-Po(1.6-31%)和 Resin-P(1.5-18%)。总不稳定P(即 Resin-P、BicPi 和 Bic-Po 的总和)占土壤总 P 的 4-20%。其中 Resin-P 的海拔影响最大,海拔最低处浓度最高。对于两种植被类型来说,最高海拔的树脂P 浓度分别比最低海拔的荒地和草地低 7 倍和 11 倍。总不稳定 P 趋势反映了树脂 P 的趋势,荒地最高海拔 (1000 m) 的浓度不到 500 m (最低海拔) 和 700 m 地点记录的浓度的1/5。在草甸,最高海拔处的总不稳定磷浓度不到最低海拔处记录的1/3。虽然海拔对除 Bic-Pi 和 HCl-P之外的所有其他土壤特性也有显着影响,但测量的任何其他 P 组分的海拔都没有简单的单向趋势或 Alox + Feox 或吸附指数。Resin-P保持单向升高趋势,Bic-Po保持非单向效应;此外,Bic-Pi 收到海拔的显著影响,因为它在草地的最低海拔处最高。将所有海拔和植被类型结合起来,Resin-P 与 Alox + Feox 和吸附指数均呈显着负相关,尽管相关性较弱。在大多数其他 P 组分与 Alox + Feox 和吸附指数之间观察到显着的正相关关系,最强的是 NaOH-Po 和 HCl-P,Resin-P 和总不稳定 P 与荒地和草甸植被中的温度显著正相关,荒地中的 pH 值也是如此, NaOH-Po与荒地温度呈负相关。


文献解读| 在亚北极苔原,土壤有效磷含量随着海拔升高而降低
文献解读| 在亚北极苔原,土壤有效磷含量随着海拔升高而降低
文献解读| 在亚北极苔原,土壤有效磷含量随着海拔升高而降低

(2)植被的影响

除树脂P和总不稳定磷外,所有磷组分的浓度在草地和荒地之间存在显著差异,除Bic-Po 外,所有这些都在草地上最高。NaOH-Po组分在两种植被类型之间的浓度差异最大; 草甸中的浓度平均比荒地中的浓度高三倍,并且代表草甸中的总P的25%,但仅在荒地中13%。Alox和Feox的浓度彼此高度相关 (R2 = 0.951,p,0.001),并且它们的总和 (Alox + Feox) 在草地中比在荒地中高平均三倍。平均20%,草地的吸附指数也显著高于荒地 。此外,吸附指数与Alox + Feox显著正相关。浓度除以吸附指数后,Bic-Pi和Bic-Po在草地和荒地中分别保持最高,而树脂-P在荒地中也最高。除Bic-Pi和HCl-P外,所有P组分的植被类型和海拔之间都存在交互作用,这意味着土壤P组成对海拔变化的响应取决于植被类型。

文献解读| 在亚北极苔原,土壤有效磷含量随着海拔升高而降低
文献解读| 在亚北极苔原,土壤有效磷含量随着海拔升高而降低



六、讨论

(1)海拔升高对不稳定性P组分的影响

假设不稳定磷组分的浓度随海拔升高(温度下降)而下降,而与植被类型无关。我们认为树脂-P、Bic-Pi和Bic-Po代表最不稳定的P组分;树脂磷与植物磷吸收密切相关,被认为是生物有效性最高的部分。此外,Bic-Pi被认为来源与树脂-P类似,而Bic-Po则容易矿化。对于这种树脂P形态,植被与海拔高度也有很强的交互作用,这意味着这两种植被类型之间的下降模式不同,因此海拔(温度)对磷有效性的影响取决于植被类型。Bic-Pi和Po的浓度没有显示出任何随海拔升高的单向趋势,但鉴于它们发生在低得多的浓度下,总体趋势仍然是生物可利用 P 随着海拔升高而下降的趋势之一。本研究地点的 Alox + Feox 浓度和吸附指数在不同海拔高度不同,并且都与总不稳定 P 呈弱负相关,但即使在校正吸附指数后,Resin-P 的海拔趋势仍然保持不变,表明它们在很大程度上是由吸附以外的因素解释的。许多因素可以解释观察到的 Resin-P 随着升高而降低。有机磷(作为 NaOH 可提取物和残留磷)是这些腐殖质土壤中磷的主要形式,有机磷的酶水解可能是释放生物可利用无机磷的驱动因素,正如阿拉斯加苔原所显示的那样。温度是亚北极地区土壤酶活性最强的驱动因素,变暖实验表明,即使温度相对较小的升高 (1.2-1.7°C) 也会导致高山生态系统有机磷矿化的大量增加。在此研究的海拔梯度上的温度变化先前已被证明与一系列变量有关,包括土壤pH,总氮和铵浓度,C与N的比率,植被密度,植物和微生物群落组成以及真菌与细菌的比率 。因此,许多沿海拔梯度变化的土壤和植被特性很可能代表对P可用性的间接温度控制。据以往研究表明,这是第一次沿亚北极海拔梯度进行 Hedley P 分馏分析。我们的研究结果进一步表明,由于海拔(以及温度)的微小变化与可用磷的巨大变化有关,根据当前气候变化预测,温度升高可能对北极苔原的未来磷可用性产生重大影响。

(2)不同磷组分的植被差异和分布

在草甸土壤中,Bic-Po总浓度显著低于荒地土壤,而吸附指数和Alox+Feox浓度显著高于荒地土壤。然而,Bic-Pi的浓度表现出相反的模式,最大的不稳定磷库树脂-P的浓度在不同植被类型之间没有显著差异。由于较高的铝和/或铁已被证明与有机土壤中的磷保留呈正相关,我们预计这也会导致树脂磷浓度降低,树脂磷具有较高的吸附倾向。然而,我们土壤中的Alox和Feox浓度远低于其他有机土壤中的Alox和Feox浓度。综上所述,我们的结果表明,草甸土壤中的铝和铁浓度不足以对活性无机磷的浓度施加强有力的控制。草甸土壤中较高的Alox Feox浓度和吸附指数值对树脂-P的浓度几乎没有明显影响,但它们可能导致有机P的吸附较高。这一事实表明,草甸中的NaOH-Po和残留P (在我们的土壤中主要是有机的) 的浓度比荒地中的高2.0和1.5倍。一些有机P化合物对Al和Fe氧化物具有很高的亲和力,并且土壤有机p通常与有机土壤中的Al和Fe浓度呈强正相关,通过保护有机磷免受微生物矿化的影响,草甸土壤中较高的有机磷吸附能力可以间接降低磷的利用率。这得到了我们的结果的支持,该结果表明,草甸的树脂磷浓度以总土壤磷的百分比表示,大约是荒地土壤中的一半,并且与草甸的磷限制比荒地植被中的磷限制相对较高的发现一致。


七、结论

(1)海拔下降500 m,同时温度升高2.5-3.0°C,在不同的苔原植被类型下,北极土壤中的树脂P浓度提高了约10倍。但是树脂P浓度随海拔 (温度) 变化的特定方式随植被类型而不同。

(2)在草甸土壤中,草酸盐可提取的Al和Fe的浓度较高,磷的吸附能力较高,有机磷的积累较高,树脂P的浓度成比例地较低,这与先前关于较高的相对P限制的报道相一致。草甸植被。

(3)本研究结果表明,下个世纪北极地区预测的温度升高3-5°C可能会增加土壤中不稳定P的浓度,但是这种升高的具体模式可能取决于植被类型。未来土壤磷利用率的增加可能会影响关键的生态系统过程,例如这些高度营养受限的苔原生态系统中的初级生产。


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 12 - 04
    CT技术是一种非破坏性三维成像技术,利用X射线扫描样品,通过重建算法生成样品内部结构的高分辨率三维图像。CT技术通过实现从土壤微观结构到植物器官内部形态的无损三维成像与定量分析,为土壤学、植物学及其界面过程的多尺度机制研究提供了前所未有的视角与方法支撑。 1.土壤应用方向分析:土壤孔隙结构与水分、气体运移土壤团聚体形成、稳定性及养分保持机制土壤动物活动痕迹及其对土壤结构的影响土壤-微生物空间分布与微生境分析 2.植物应用方向分析:植物根系构型、分布及其与土壤互作茎秆、叶片、种子、果实等器官的内部三维结构植物维管系统、孔隙网络与水分输导研究植物响应环境胁迫(如干旱、淹水、机械损伤)的结构变化 3. 土壤-植物交叉研究方向根-土界面互作过程与资源获取策略根系生长对土壤结构的塑造效应根际微域中水分、养分与微生物的空间异质性植物根系与土壤动物、微生物的互作可视化如下是土壤、植物相关样品CT检测相关图例展示和相关分析介绍,如需检测该指标欢迎联系文末工作人员详细沟通~01土壤柱状样品 1、取样:用小铲子清除土壤表面的杂物,CT扫描原状土柱采集使用高强度抗压PVC管(高10 cm,内径5 cm)进行操作。取样前将PVC管一端打磨成刀刃状打入土中进行取样,采集深度为5-10 cm。采样完成后,用保鲜膜对PVC管进行密封用于Micro-CT扫描。 2、检测 Micro-CT扫描通过计算机控制射线源发出射线束,旋转样品台承载所取的原状土柱,以0.5°/s的速度旋转,平板探测器负责采集扫描获得的系列投影数据,最后计算机通过将采集到的投影数据重建为土壤的横切片图像,每个样品可重建出大概1600张横切面图像。扫描过程中电压最大为160 kV和电流50 μA左右,扫描精度为25.5 μm。 3、图像分析 ...
  • 点击次数: 0
    2025 - 11 - 24
    土壤是一个复杂的三相(固、液、气)多孔介质,其物理结构(如团聚体、孔隙度)是一切生命活动的基础。微塑料的存在会改变孔隙结构、影响水分运移、影响气体交换等等,它可以吸附环境中的重金属、持久性有机污染物等,成为这些有毒物质的“载体”,改变它们在土壤中的分布和生物有效性,加剧复合污染。微塑料的测定方法主要有上述提到的光谱法、显微分析法和热裂解法等,如下是热裂解测定方法介绍。BAIHUI微塑料定性定量测定分析可测定12种主要微塑料!聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯树脂(ABS)、丁苯橡胶(SBR)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚氨酯(PU:MDI型)、聚对苯二甲酸乙二醇酯(PET)、尼龙6(N6)、尼龙66(N66)01微塑料测定流程方法简述:称取过2 mm筛的风干土壤5 g于250 mL烧杯中,加入50 mL饱和氯化钠溶液,磁力搅拌30 min。静置3 h,悬浮上清液倒入250 mL烧杯。改用50 mL ZnCl2(密度约1.6 g/cm3)浮选一次,磁力搅拌30 min,静置3 h,上清液倒入前述250 mL烧杯。将250 mL烧杯中液体用不锈钢滤膜抽滤,收集滤膜,加30 mL过氧化氢,超声10 min, 60 ℃加热24 h。收集溶液,用不锈钢滤滤膜抽滤,收集滤膜,晾干备用。将滤膜放入烧杯,加有机溶剂,超声10 min,溶剂浓缩至1 mL。取50 μL至80 μL裂解样品杯,通风橱内挥干,加CaCO3稀释剂2 mg,少量玻璃棉覆盖,待测。校准曲线绘制称取以CaCO3稀释剂为基质的微塑料标准物质(12种微塑料),0.1、0.5、1.0、2.0、4.0 mg,加入至裂解样品杯中,少量玻璃棉覆盖,配制成标准系列。02测定结果展示03分析软件-F-Sear...
  • 点击次数: 0
    2025 - 11 - 05
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务