028-8525-3068
新闻动态 News
News 行业新闻

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

日期: 2022-02-15
标签:

一、文章基本信息

原名Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient

译名:土壤微生物群落和酶活性沿海拔梯度的变化规律

作者Chengjie Ren,et al.

期刊:Catena

影响因子:5.198

发表时间:2021.


二、文献阅读内容

1 关键词

海拔梯度;土壤微生物多样性和酶;外生菌根真菌和腐养真菌;根际效应;气候变化。

2 研究主题和背景

(1)背景:土壤系统中微生物群落和酶活性沿海拔梯度的分布规律已引起广泛关注;然而,根际土壤微生物多样性和酶活性的差异及其驱动因素尚不清楚。

(2)主题:本研究覆盖六个海拔水平梯度,范围从海拔1308米到2600米。利用Illumina MiSeq对16S rRNA基因和ITS-1基因进行测序,分析根际和非根际土壤中细菌、真菌总量、外生菌根真菌(EcM)和腐养真菌群落;同时分析了土壤胞外酶活性。

3 科学问题或科学假说

(1)科学问题:沿海拔梯度下根际/非根际微生物群落结构和酶活性分布规律及其驱动因素?

(2)科学假说

由于根际与非根际之间土壤理化性质的差异,如SOC, 是导致根际/非根际土壤微生物多样性和酶活性显著差异的重要因素,但随海拔升高而减小,而海拔梯度下植物特征和气候因素变化对其影响极小。

4 以往研究及研究现状

在一些研究中已经使用了海拔实验来检验气候变化对土壤微生物的影响,这些实验表明,微生物多样性和酶活性表现出不一致的模式,即随海拔变化单调减少,驼背或无。这是因为环境条件会随着海拔的变化而变化,从而为微生物创造了复杂的条件,虽然有一些研究报道了微生物群落的海拔分布,但大多数研究考虑的是全土,很少有研究考虑根际,特别是根际土壤和整体土壤在海拔梯度上的差异不太明确,根际土壤的养分转化率一般高于非根际土壤。

5 材料与方法

A.样地与土壤样品采集与保存:该实验于2018年7月进行采样,6个海拔高度覆盖3种植被类型。1308m、1603m-QVA;1915m、2292m-QW;2406m、2600m-BA,这三种共生树种通常与外生菌根真菌(EcM)有关,外生菌根真菌在这些森林的土壤微生物群落中占主导地位。每个海拔梯度取三个重复。为了进行原位植物群落描述,在每个站点随机选择3个10 × 10 m象限、5个5 × 5 m象限和10个1 × 1 m象限,分别测定乔木、灌木和草本植物的丰富度和Shannon多样性,同时采取根际很非根际土壤。

B. 植物特性及土壤理化性质分析

通过磨细测定树叶和树根中的碳、氮、磷含量;土壤pH;TC、TN、TP;MBC、MBN、MBP;硝态氮、氨态氮;土壤容重:在105°C烘箱烘干24小时后和之前的岩心重量测定,并根据单个岩心体积进行校正。

C. 土壤酶活性分析

测定土壤酶活:BG、NAG+LAP、AP分别为C、N、P获取酶。

D. 土壤DNA提取,PCR扩增,Illumina MiSeq测序

使用FastDNA旋转试剂盒从新鲜土壤中提取DNA (MP Biomedicals,美国克利夫兰)。通过分光光度计(NanoDrop2000, Thermo Scientific,美国威尔明顿,德)。提取的土壤DNA在−80℃保存至PCR扩增和分析。序列使用QIIME进行。

E.数据分析

PLS-PM揭示沿海拔梯度下哪些环境变量对微生物多样性和酶活性的影响更大;采用冗余分析(RDA)方法分析了土壤微生物与气候、植物性质、土壤性质等环境变量的关系;采用单因素方差分析(ANOVA)分析了海拔梯度对气候因子、植物性状、土壤性状、土壤微生物生物量、微生物多样性、优势菌门和酶活性的影响。

6 结果

(1) 土壤特性和植物特性。气候变量(气候因子和植物-土壤性质)沿海拔梯度的变化;沿海拔梯度优势树种的变化由QVA-QW-BA,丰富度和Shannon多样性随海拔升高先增加后降低。叶片和根系养分水平(C、N和P)最高的是在1915m,除了根C,最高在2292m,土壤性质表现出相似的趋势;MBC、MBN、MBP、TN、SOC和NH4+在1915 m处最高。

(2)图1、图2:根际土壤与土壤微生物群落的差异。根际和非根际土壤中微生物多样性随海拔升高呈驼背曲线变化。根际土壤微生物群落多样性差异(除腐养群落多样性外)随海拔升高显著减小。根际和非根际细菌多样性存在显著性差异。

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

(3)根际土壤与非根际土壤酶活性的差异。海拔高度显著影响土壤酶活性。其中,C -获取酶(BG)、N-获取酶(NAG + LAP)和P-获取酶(AP)活性均随海拔升高而显著降低,且根际土壤的活性显著高于非根际土壤。与微生物多样性响应一致,C、N、P获取酶的活性在根际和非根际土壤中的差异随着海拔的增加显著的降低。

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

(4)根际和非根际土壤微生物群落和酶活性差异的影响因素。结果显示微生物多样性分别解释了90.1%、62.4%、82.3%的根际、非根际以及差异的变异方差。此外,除对气候因子的响应外,根土壤微生物多样性(通径系数= 0.786)主要受植物特性的直接影响,而非根际土壤微生物多样性则受植物特性的直接影响。结果表明,不同海拔梯度对根际土壤酶活性变化的贡献率分别为96.3、95.2和91.2%。RDA和Pearson相关性分析表明,根际土壤和非根际土壤中的微生物细菌和真菌类群对环境因子的响应不同。其中,气候因子(MAT和MAP)、BD、pH、TP和NH4+对根际土壤和非根际土壤细菌和真菌类群变异的解释作用更大。

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

7 讨论

(1)根际土壤微生物群落多样性随海拔升高而显著变化,根际与非根际土壤微生物群落多样性的差异随海拔升高而显著减小,验证第一个假设。 空间属性、气候因素、植物群落和其他生物和非生物变量可能解释了土壤微生物多样性的动态变化,以及根际效应对微生物多样性的重要性。此外,根际土壤微生物多样性高于非根际土壤,主要是由于植物根系分泌物释放的养分流向周围土壤,较高的温度会加速养分释放。因此,海拔依赖性的土壤温度下降可以导致较低的养分波动。

(2)随着海拔梯度的增加,BG, NAG,LAP和酸性磷酸酶(AP)活性均显著降低。与巴塔哥尼亚南部土壤酶活性对海拔梯度没有显著响应的研究不一致,土壤酶是由微生物响应环境信号而表达并释放到环境中的,这种差异可能是由于不同样带样点,植被类型也不同造成的。也有一些研究表示,海拔依赖性的土壤微生物组成变化导致土壤酶活性的不同响应;此外,土壤酶活性也可能取决于海拔梯度上的复杂条件,如土壤温度、水分和土壤养分有效性等。此外,根际和非根际土壤的酶活在高海拔梯度非常相似,说明高海拔,环境越恶劣,根-土系统中养分获取酶的相似性越高。与以往研究一致,高海拔低土壤温度可以创造相对稳定的生境,导致微生物代谢活性较低,导致根际土壤和整体土壤在海拔梯度上差异减小。

(3)根际和非根际土壤中微生物群落和酶活性的差异与环境条件有关。气候因子对微生物群落的形成起着至关重要的作用,低温和高海拔增加的生理胁迫会限制微生物的生长,最终降低微生物的多样性,

8 总结与思考

(1) 土壤细菌、真菌总量、EcM、腐养真菌群落多样性及土壤酶活性在海拔梯度上均发生显著变化,根际和非根际土壤间的差异随海拔升高而显著减小。

(2) 土壤微生物多样性和酶活性的差异主要取决于气候因素,表明气候是影响根际和非根际土壤微生物多样性和酶活性差异的最重要的生态因子。除了气候因子,土壤性质也影响根际和非根际土壤在海拔梯度上的微生物多样性和酶活,证实土壤养分水平可以解释微生物多样性和酶活性沿海拔梯度的差异。

(3) 综上,研究结果强调了以海拔引起的微生物多样性和酶活的变化为代表的根际效应的重要性,并预测气候变化的潜在结果。

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务