028-8525-3068
新闻动态 News
News 行业新闻

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献

日期: 2022-01-12
标签:
微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


摘要:

微生物残体在土壤有机碳(SOC)积累中起重要作用。然而,从凋落物到矿物土壤,微生物残体碳(C)浓度及其对有机碳固存的贡献,以及影响残体碳积累的因素尚不清楚。为了解决该问题,我们在黄土高原栎林凋落物-矿物土壤剖面上开展了微生物残体碳的组成分布特征及其对SOC固存贡献的研究。本研究基于微生物细胞壁的生物标志物氨基糖来估计微生物残体C浓度。结果表明,从Oi1层到Oa层,微生物残体C增加,而从Ah1层到AB层微生物残体C减少。微生物残体C在凋落物-矿物土壤界面的累积量最高(Oa层总微生物残体量为39.5 Mg ha−1, Ah1为22.8 Mg ha−1)。从Oi1到Ah2,总微生物残体C对SOC的贡献增加。其中,总微生物残体C平均分别占Ah1、Ah2和AB层栎林矿质层SOC的40.7%、47.7%和37.0%。从凋落物到矿质土壤,真菌与细菌残体C的比值逐渐降低,说明相对较高的细菌残体C在较深层凋落物和较上层矿质土壤的积累更多。真菌和细菌残体C随活性有机C, 氮(N)和活性无机磷(P)的增加而增加,说明可溶性营养物质的增加导致微生物生物量的增加,进而导致更高的微生物残体C积累。综上,我们的研究结果表明,微生物对C或N的需求影响了可溶性营养物质的数量,并进一步导致微生物残体C分解或积累的变化。

关键词:

氨基糖,土壤有机碳固存,凋落物-矿物土壤剖面,化学计量学,栎林,黄土高原

研究背景:

越来越多的研究证据表明微生物残体是SOC的一个主要组成部分,在很多研究案例中微生物残体占SOC的50%以上。以往研究案例表明,在三年的凋落物分解实验中,只有不到三分之一的植物有机组分进入土壤,通过植物残体的物理转移和微生物残体C的续埋效应增加了SOC积累。然而,森林凋落物-土壤剖面中微生物残体的变化仍不清楚。该领域的研究能帮助我们更好地理解在野外凋落物分解过程中,微生物残体C是如何从枯死叶片进入土壤的。

环境条件和微生物营养需求对残体再循环有强烈影响。环境中C, N的高有效性促进了微生物残留物的积累。例如,营养丰富的环境中,微生物群落采用高产策略促进生长,从而加速残体积累。相反,在养分限制的条件下,采用营养获取策略的微生物群落限制残留物的产生和积累。因此,微生物对C, N的需求和环境C, N有效性可能会影响微生物残留物的积累和分解,因为微生物C/N/P化学计量学取决于土壤或凋落物中的养分有效性。相比矿质土壤或凋落物的总养分,土壤或凋落物中的活性养分(如活性C、N和P)及其C/N/P比更多变,但更接近土壤微生物的化学计量学。微生物残体是一种重要的N资源,有助于缓解过量活性C输入下的微生物N的缺乏,这是一种比从不易分解的SOM中获取N更有效的微生物策略。然而,可溶性有机营养元素与微生物残体形成和积累的关系尚不清楚。因此,本研究探讨了黄土高原栎林凋落物-矿物土壤剖面中微生物残体的分布;微生物和可溶性养分C/N/P化学计量特征对微生物残体及其对有机碳固存的贡献。

科学问题:

(1)凋落物层和矿质土壤中微生物C/N/P的化学计量特征和微生物内稳态变化程度如何?

(2)从凋落物到矿质土壤,微生物残体浓度及其对土壤有机碳积累的贡献是如何变化的?

(3)影响微生物C/N/P化学计量学和残体积累的关键因素是什么?

主要结果:

1. 微生物生物量C/N/P化学计量学

凋落物总N、LOC和LON随凋落层深度的增加而增加,Oe和Oa层最高(图2b,2d,2e)。凋落物MBC和MBN不随凋落物层深度增加而下降(图2g,2h)。尽管凋落物层和矿质土层的C/N、C/P和活性的有机C/N随深度增加而降低(表1),但在凋落物层(从Oi1到 Oe层)和矿质土层(从Ah1 到AB层),微生物几乎分别保持了恒定的生物量C/N比(表1)。

表1 凋落物和矿质土壤C/N/P化学计量特征、活性有机/无机物特征和微生物生物量特征。数值以平均值±标准误差(SE)表示。

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图2 凋落物-矿质土壤剖面中C、N、P含量、活性有机/无机物质含量和土壤中微生物量。数值以平均值±标准误差(SE)表示。OC:有机碳; TN:总氮;TP:总磷;LOC:活性有机碳;LON:活性有机氮;LIP:活性无机磷;MBC:微生物生物量碳;MBN:微生物量氮;MBP:微生物生物量磷。

2.微生物残体C储量及其对SOC固存的贡献

凋落物层中真菌和细菌残体C储量随凋落物层深度增加而增加(图3),分别从8.1增加到35.4 Mg ha-1,从0.4增加到4.1 Mg ha-1(图3a,3b)。相反,矿质土壤层中真菌和细菌残体C储量从Ah1层到AB层降低(图3)。从凋落物到矿质土壤,真菌残体C和细菌残体C的比值降低(图3c)。凋落物层和矿质土壤层界面具有最高的微生物残体C积累。

从凋落物层到矿质土壤层,总微生物残体C对总SOC的占比增加(图3d)。具体表现为,在Ah1层,Ah2层和AB层中,总微生物残体C占比分别为40.7%,47.7%和37.0%。

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图3 在凋落物-矿质土壤剖面上,真菌残体C储量(a)、细菌残体C储量(b)、真菌/细菌残体C比值(c)和微生物残体C总量对SOC的贡献(d)。数值以平均值±标准误(SE)表示。总微生物残体C以真菌残体C和细菌残体C的总和表示,总微生物C占SOC的比例代表微生物残体C对SOC固存的贡献。

3.影响微生物C/N/P化学计量学和残体的因素

RDA分析结果表明在凋落物层中MBC, MBN, MBC/MBP, 和MBN/MBP与LOC, LON, LOC/LIP和LON/LIP显著相关(图4a)。具体表现在凋落物层中LOC/LIP, LOC, LON/LIP 和LON是解释上述变量的重要因素,表明微生物量及其化学计量学的变化由可溶性养分及其化学计量学所驱动。

RDA分析结果表明凋落物总C, N, P及其可溶性形态和化学计量比解释了微生物残体的主要变异(图4c,4d)。不考虑凋落物总C, N, P水平及其比率,活性有机C, N和无机P水平及其化学计量学是影响氨基糖和微生物残体C的主要因素。TN和MBN是驱动矿质土壤中氨基糖和微生物残体C变化的主要因子(图4d)。凋落物和矿质土壤中的活性有机C, N和无机P及其化学计量学在改变氨基糖和微生物残体C上发挥重要作用(图4c,4d)。具体表现为,凋落物和矿质土壤中的LOC/LIP和LON/LIP与真菌细菌残体C以及总微生物残体C呈正相关。只有凋落物中的LOC/LON和真菌细菌残体C以及总微生物残体C呈负相关。此外,真菌细菌残体C和总微生物残体C随可溶性C, N和P增加而增加(图5)

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图4 RDA分析显示了凋落物(a)或矿质土壤(b)中C、N、P、活性有机/无机物质及其化学计量学对微生物生物量C、N、P及其化学计量学的影响。RDA轴1和轴2对凋落物层微生物生物量C、N、P及其化学计量学的贡献率分别为58.8%和2.95%,对矿质土壤微生物生物量C、N、P及其化学计量学的贡献率分别为78.8%和12.5%.

微生物残体碳从凋落物到矿物土壤的积累及其对土壤有机碳的贡献


图5 活性有机C,N和活性无机P与真菌残体C,细菌残体C和总微生物残体C之间的关系。LOC,活性有机碳;LON,活性有机氮;LIP,活性无机磷。

结论

研究结果表明真菌残体C,细菌残体C和总微生物残体C随凋落物层深度增加而增加,随矿质层深度增加而降低。在凋落物层和矿质层交界面微生物残体C积累量最高,这归因于高浓度的可溶性养分,进一步导致了更高的微生物残体积累。尽管真菌残体C浓度,细菌残体C浓度和总微生物残体C浓度从凋落物层到矿质层是降低的,但是总微生物残体C对SOC的贡献增加。此外,微生物受活性有机C或N水平的影响,而活性有机C和N的缺乏可能导致微生物残体的分解。因此,微生物对C或N的需求影响可溶性养分水平,而可溶性养分水平的上下波动导致微生物残体C在分解或积累之间变化。在森林凋落物-矿质土壤剖面中,可溶性养分水平和微生物对它们的利用可能对理解微生物残体C的积累/分解及其对SOC固存的贡献至关重要。


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
  • 点击次数: 0
    2025 - 04 - 29
    01按照土壤碳的形态分类(1)有机碳 • 总有机碳:土壤中所有来源的有机碳总量。 • 可溶性有机碳:可溶于水的有机碳,影响土壤碳循环的活性部分。 • 颗粒态有机碳:粒径通常在53 μm–2 mm之间的有机碳,较易分解。 • 矿物结合有机碳:与矿物颗粒结合的有机碳,较为稳定。 • 轻组有机碳:通过浮选法分离出的轻组有机碳,主要由未完全分解的有机质组成。 • 重组有机碳:通过浮选法分离出的重组有机碳,主要由金属氧化物结合的有机质组成。 • 微生物生物量碳:土壤微生物体内的碳,是活性有机碳的一部分。 • 易氧化碳:能被高锰酸钾氧化的有机碳,表征活性有机碳库。(2)无机碳 • 总无机碳:土壤中的所有无机碳总量。 • 碳酸盐碳:主要以方解石(CaCO₃)、白云石(CaMg(CO₃)₂)等矿物形式存在。 • 碳酸氢盐碳:土壤溶液中的可溶性无机碳,易随水流失。02按碳库的稳定性分类 • 活性有机碳库:周转快,易受环境变化影响,包括DOC、MBC、POC等。 • 慢性有机碳库:周转较慢,部分矿物结合的有机碳属于此类。 • 惰性有机碳库:高度稳定,如腐殖质碳、黑碳。03按土壤深度分布分类 • 表层土壤碳( 0–30 cm):主要受植被、微生物和人为活动影响。 • 深层土壤碳(30 cm):稳定性较高,受矿物结合和碳迁移过程影响。04按来源分类 • 植被来源碳:枯落物、根系分泌物、植物残体分解产生的碳。 • 微生物来源碳:微生物代谢及死亡后残留的碳。 • 外源输入碳:施肥、污染物沉降等外部输入的碳。这些指标可以用于研究土壤碳循环、碳固存、农业土壤管理等问题。在实际研究中,通常结合稳定同位素分析、核磁共振(N...
  • 点击次数: 0
    2025 - 04 - 09
    铁氧化物结合态有机碳在土壤碳汇和碳稳定方面有重要意义,尤其在全球气候变化和土壤碳库管理背景下,越来越受关注。但仍然存在不少研究空白。今天我们通过ChatGPT和DeepSeek两大AI平台分析一下在该领域尚未被充分研究的热点问题和潜在研究方向~一、ChatGPT分析结果01铁氧化物结合态有机碳的稳定性机制与动态过程研究方向: • 原位监测 Fe-OC 在周期性湿润/干燥条件下的稳定性。 • 利用同位素示踪和光谱技术揭示铁矿物转化(非晶态铁 → 晶态铁)对有机碳稳定的影响。研究意义:• 理解铁氧化物在不同氧化还原条件下如何稳定或释放碳,有助于预测湿地、稻田等环境下土壤碳库的动态变化,进而对碳循环建模和气候变化预测有指导意义。02铁-有机复合物中有机碳的分子特征与来源研究方向: • 利用高分辨率质谱(FTICR-MS)、X射线吸收精细结构光谱(XAFS) 等先进技术分析 Fe-OC 复合物中的有机分子组成。 • 比较不同土壤类型或植被类型下 Fe-OC 结合的有机碳来源差异。研究意义:• 搞清楚什么样的有机碳更容易与铁矿物结合,有助于优化土壤管理策略,促进碳固定,提高土壤碳汇功能。03微生物在铁氧化物-有机碳互作中的作用机制研究方向: • 研究不同功能群微生物(铁还原菌、铁氧化菌)在 Fe-OC 动态中的角色。 • 解析微生物胞外多糖(EPS)、胞外电子传递对 Fe-OC 形成和解离的影响。研究意义:• 微生物过程是土壤碳稳定的关键环节,揭示微生物与 Fe-OC 的交互机制,有助于发展基于微生物调控的土壤碳汇增强技术。04土地利用变化和管理措施对 Fe-OC 储量与稳定性的影响研究方向: • 比较不同土地利用类...
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务