028-8525-3068
新闻动态 News
News 行业新闻

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

日期: 2021-12-08
标签:

原名:Alkaline phosphatase activity mediates soil organic phosphorus

mineralization in a subalpine forest ecosystem.

译名:碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

作者Jiabao Liet al.

期刊:Geoderma

发表时间:2021.06


一、关键词

磷矿化;碱性磷酸酶;酸性磷酸酶; 磷有效性;phoD相关细菌群落。

二、研究主题和背景

1背景:微生物在土壤有机磷矿化中起着至关重要的作用。然而,在亚高山森林中,微生物和环境特征如何介导这一过程仍然是未知的。

2主题:本研究以青藏高原贡嘎山沿海拔梯度的暗针叶林为研究对象,综合研究了碱性磷酸酶(ALP)和酸性磷酸酶ACP活性对土壤磷有效性的影响,探讨了两种磷酸酶活性的微生物和环境驱动因素。

三、科学问题或科学假说

(1)科学问题:酸性和碱性磷酸酶对土壤P有效性有什么影响?这两种磷酸酶活性的环境和微生物作用机制? 

(2)科学假说:

A. 碱性磷酸酶ALP对亚高山森林土壤中磷的有效性具有重要的调节作用

B. 碱性磷酸酶活性与酸性磷酸酶相似,主要受土壤TN调节,土壤NP也可能影响其ALP的活性。

C.  N:P比驱动的含磷微生物种群有助于碱性磷酸酶活性的变化

四、以往研究和研究现状

在陆地生态系统中,酸性磷酸酶主要来源于植物根系和微生物,碱性磷酸酶主要来源于微生物,因此,ALP被认为是微生物周转的重要驱动因素。一些研究已经在农业生态系统中进行,以阐明酸性磷酸酶活性与NP添加之间的相互作用然而,森林生态系统中碱性磷酸酶活性的研究较少,可能是由于酸性磷酸酶比碱性磷酸酶在酸性条件下的有机磷矿化中起着更重要的作用。但是最近有研究表明,与酸性磷酸酶相比,酸性土中碱性磷酸酶中编码基因个更多,因此了解它们如何调节土壤有机磷矿化,特别是在亚高山森林生态系统中,可以提供微生物群落与磷循环之间的联系农业生态系统中酸性磷酸酶活性的调节因子已进行了许多研究,土壤有机质,土壤成土作用,岩石以及生物气候因子被认为是最重要的驱动因素。

五、材料和方法

A.样地与土壤样品采集与保存:2017年的两个季节(8月和10)分别亚高山森林-贡嘎山于4个海拔高度(2800m3000m3200m3500m)的地点采集了土壤样品主要是冷杉。 在每个海拔梯度,分别选取三棵间距大于15m的树进行根际和非根际土的采样,每个新鲜土壤样品通过2mm筛分,分为两个子样品,其中一个样品储存在4C测量土壤理化性质和磷酸酶活性,另一部分储存在-20C提取DNA

B.土壤理化性质和磷酸酶活性的测定

土壤pHNO3- -NNH4+-NTPAP

C.DNA提取和基因定量

利用PowerSoil®DNA分离技术提取土壤基因组DNA试剂盒(MOBIO, CA, USA),并使用NanoDrop分光光度计评估分离的DNA的质量和数量.

D.phoD基因扩增子测序

利用F733/R1083对引物对phoD基因进行扩增,可获得最高的phoD微生物群落多样性和覆盖度

E.数据分析

采用置换多元方差分析(PERMANOVA)方法,研究了海拔、季节和地理位置(根际和根际体积)对土壤碱性和酸性磷酸酶活性、无机磷含量、磷含量和磷含量的影响。非参数检验用于描述不同季节/时间上海拔和地理位置的差异。主坐标分析(PCoA) 确定所有样品中含有phod的细菌群落结构的变化。采用偏最小二乘路径模型(PLS-PM)进一步揭示了不同因素影响土壤碱性磷酸酶和酸性磷酸酶活性及磷有效性的可能途径

六、结果

11:土壤有效无机磷含量和碱性、酸性磷酸酶活性10月的土壤无机有效磷含量显著高于8月,最高含量出现在海拔3000m处;相反,土壤酸性和碱性磷酸酶活性在8月更高,相对较高含量出现在海拔2800m3000m。普遍来说,根际的无机有效磷,酸性和碱性磷酸酶活性都高于非根际土壤。

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

2)图2、图3:微生物丰度、多样性及组成。phoDphoC基因的丰度8月显著高于10月,但在根际和非根际中无显著差异。phoD细菌群落的结构在根际土和非根际土中也无显著差异。

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

(3)4:无机磷含量与环境及微生物性状的关系。8月,无机磷与碱性磷酸酶活性之间存在显著的正相关关系(p<0.05),而有效无机磷含量与酸性磷酸酶在两个季节上均无显著相关关系。与无机磷含量不同的是,土壤碱性磷酸酶和酸性磷酸酶与TNTC显著相关(p < 0.001)

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

七、讨论

1碱性磷酸酶活性对土壤磷有效性具有重要调节作用:虽然酸性磷酸酶的活性是碱性磷酸酶活性的1-2倍,但phoD基因丰度比phoC基因丰度高1-2个数量级。因此,假设在亚高山森林中,酸性磷酸酶可以促进有机磷矿化,无论土壤无机磷储量是否低,而碱性磷酸酶则可以释放无机磷。从而为微生物和植物提供磷提供了另一种途径。

2碱性磷酸酶活性与相对较少的属紧密相关,而与phoD基因的丰度无关N:P比驱动的含磷微生物种群对碱性磷酸酶活性的变化有一定的影响,但是,含磷细菌群落组成与碱性磷酸酶活性无显著相关性。因此,这倾向于表明磷酸酶活性可能与细菌群落组成没有直接关系。并发现碱性磷酸酶的合成仅在相对少数的phod细菌中被高度诱导磷酸酶活性与C:N呈负相关关系,表明磷酸酶可为植物和微生物提供额外的N源。

八、总结与思考

目前关于土壤有机磷矿化调控机制的研究大多局限于农业生态系统,以及磷酸酶活性、NP添加之间的相互作用。研究重点关注亚高山森林生态系统土壤磷矿化的环境和微生物驱动因素结果表明,碱性磷酸酶活性较酸性磷酸酶活性更好地解释了土壤无机有效磷含量的海拔和季节动态,说明碱性磷酸酶活性在山地森林生态系统土壤无机磷释放中起着关键作用。颠覆了传统观点认为的酸性磷酸酶在有机磷矿化过程中较碱性磷酸酶起着更为重要的作用。此外,土壤TCTN对这两种磷酸酶活性起着重要的作用,碱性磷酸酶活性受土壤N:P比例的调节,非酸性磷酸酶,这可能是由于ALP编码基因的转录受磷饥饿反应调节的控制。通过整合微生物群落数据集,我们的结果显示,尽管phoD基因的丰度和多样性不高,但碱性磷酸酶活性与相对较少的含phoD细菌密切相关。本研究重点关注根际和非根际土壤磷酸酶活性以及与NP等的关系,但是对于海拔梯度上酸性和碱性磷酸酶的差异及其与微生物群落等的相互作用关系还有待研究。

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务