028-8525-3068
新闻动态 News
News 行业新闻

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

日期: 2021-08-20
标签:

原名:Absorptive and transport roots differ in terms of their impacts on rhizosphere soil carbon storage and stability in alpine forests

译名:高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

期刊:Soil Biology and Biochemistry

IF: 7.609

发表时间:2021.08.10

第一作者:汪其同

通讯作者:尹华军

主要单位:中国科学院成都生物研究所

摘要:

根据木本植物细根形态、生理和功能特征的内在差异,可将其分为吸收根和运输根两个功能模块。不同功能模块的根系对土壤生物地球化学过程的潜在生态效应已被广泛认识。然而,由这两个根系功能模块驱动的根际土壤碳储量的大小以及碳稳定机制尚不清楚。在本研究中,我们量化了云杉人工林矿质层(0-15cm)吸收根和运输根根际土壤有机碳含量和组分,进一步通过数值模型估算了两个根系功能模块不同根际范围土壤C储量。同时,通过分析根际土壤有机碳化学特征和金属-有机复合体特征,区分两个根系功能模块对根际土壤有机碳稳定性的差异化影响。结果表明,吸收根根际土壤有机碳含量比运输根根际高15.7%,这主要是由于吸收根根际土壤有机碳的稳定性(化学抗性和金属-有机键)更强。数值模型分析表明,吸收根根际有机碳库(0.27 ~ 2.7 kg C/m2)是运输根根际(0.18 ~ 1.36 kg C/m2)的2倍。在根际1 mm范围,吸收根根际土壤有机碳储量对根际土壤有机碳总储量的贡献(63.5%)远高于运输根根际(36.5%)。上述结果表明,吸收根在高寒针叶林根际土壤碳中发挥主导作用。本研究强调基于功能的细根分类与根际土壤碳储量结合运用于陆地表面土壤碳循环模型中具有重要意义,可为准确预测高寒针叶林生态系统土壤碳动态提供科学依据。


研究背景:

土壤有机碳(SOC)的形成、稳定和周转等动态变化过程已经成为当前生态学和土壤学领域亟需解决的核心科学问题之一。根系在调控土壤碳动态中的重要作用已经得到广泛认可,并在很大程度上取决于根系功能属性特征。具体而言,作为一个高度复杂且功能异质的分支系统,根系生理代谢活性在吸收根和运输根之间具有明显差异,从而导致根际SOC固存和稳定性在不同根系功能模块间呈现出高度的异质性特征。但是,现有的根际模型和实验研究大多将根际区简单视为一个均一体,很少考虑根系生命活动诱导的根际土壤碳动态在根系功能属性分化上的变异,极大地限制了在细微尺度上对森林生态系统土壤碳固存和稳定性机制的全面认识与理解,加剧了对根际土壤碳储存和持久性的评估和预测的复杂性。

研究内容:

本研究以我国西南地区一个75年的云杉(Picea asperata)人工林为研究对象,通过分离吸收根和运输根两个功能模块并采集相应的根际土壤(图1),评估了根际土壤碳含量在两个根系功能模块之间的差异,并估算了它们对根际土壤有机碳库的相对贡献。通过对土壤化学特征(C官能团和MOC含量)的表征,区分了两个根系功能模块间根际土壤有机碳稳定性的差异。鉴于根系对土壤有机碳动态的“双刃剑”效应(即对土壤有机碳储存和稳定的正或负影响),我们假设,由于根系C输入数量和质量的内在差异,吸收根和运输根会对根际有机碳储量和稳定性产生不同的影响。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图1野外采样点布置示意图(A)、细根功能模块分离及根际土壤采集流程图(B)

主要结果:

1)吸收根和运输根根际SOC浓度和组分差异

两个根系功能模块对根际SOC浓度和组分的影响存在差异。吸收根根际土壤有机碳浓度比运输根高15.7% (表1)。两个根系功能模块根际有机碳中惰性C组分的比例均超过总有机碳的50%(表1),且吸收根根际显著高于运输根根际,而活性C组分的百分比表现出相反趋势。


表1 吸收根和运输根根际SOC浓度以及活性碳和惰性碳占比

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

2)SOC稳定性的化学指标

吸收根的根际alkyl-C的比例比运输根根际高17.9%,而O-alkyl-C的比例降低了2.2%(表2)。吸收根根际SOC的疏水性指数和芳香性指数分别比运输根根际高13.33%和33.3%。与运输根根际相比,吸收根根际MOC中Fe和Al离子的含量分别高33.3%和41.6% (图2)。


表2 吸收根和运输根根际SOC的官能团特征

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性


高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图2 金属有机复合体中Fe和Al离子浓度


3)根际SOC含量和SOC稳定性的关系

Pearson相关分析表明,土壤有机碳的化学保护对根际土壤有机碳含量有一定影响。各有机碳组分中,根际有机碳含量与惰性C含量的相关性最强(图3)。根际土壤有机碳含量随有机碳化学保护程度的增加而增加。其中,根际土壤有机碳浓度与alkyl-C比例、SOC的疏水性和芳香性、Fe-MOC含量和Al-MOC呈显著正相关关系,但与O-alkyl-C比例呈显著负相(图3)。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图3 SOC浓度与SOC理化特性间的Pearson相关系数矩阵。


4)基于模型估算的吸收根和运输根根际SOC储量

吸收根单位面积根长显著高于运输根,根直径则呈相反趋势;结果导致吸收根对根际土壤体积的贡献率高于运输根(表3)。在距离根表面0.5 mm处,吸收根的根际土壤体积比运输根高33.8%。当根际范围扩大到2mm时,两个根功能模块的根际土壤体积差异增加到74.8%(表3)。

除根际土壤体积和SOC含量外,数值模型估算的根际土壤有机碳储量在两个根系功能模块间也存在显著差异。各模拟根际范围下,吸收根根际土壤有机碳储量(0.27 ~ 2.7 kg C/m2)显著高于运输根根际(0.18 ~ 1.36 kg C/m2)。在0.5 ~ 2 mm的根际范围内,吸收根根际SOC库占根际SOC总量的60%以上,且随根际范围的增加而增加(60.1% ~ 66.4%);吸收根根际有机碳库是运输根根际有机碳库的1.51 ~ 1.98倍(图4)。

表3 吸收根和运输根根际土壤体积

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图4 吸收根和运输根根际SOC储量

结论:

本研究发现吸收根和运输根对森林根际土壤碳储量的调节作用不同。总的来说,吸收根根际土壤碳储量几乎是运输根根际的两倍,这主要是因为吸收根根际土壤有机碳的稳定性较高(图5)。随着根际范围的增加,吸收根对根际土壤碳库贡献的主导作用逐步增强。本研究为理解森林生态系统根系在土壤碳动态中的重要作用提供了新的视角。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图5 吸收根和运输根差异化调控根际SOC储量和稳定性的概念框架图



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
  • 点击次数: 0
    2025 - 04 - 29
    01按照土壤碳的形态分类(1)有机碳 • 总有机碳:土壤中所有来源的有机碳总量。 • 可溶性有机碳:可溶于水的有机碳,影响土壤碳循环的活性部分。 • 颗粒态有机碳:粒径通常在53 μm–2 mm之间的有机碳,较易分解。 • 矿物结合有机碳:与矿物颗粒结合的有机碳,较为稳定。 • 轻组有机碳:通过浮选法分离出的轻组有机碳,主要由未完全分解的有机质组成。 • 重组有机碳:通过浮选法分离出的重组有机碳,主要由金属氧化物结合的有机质组成。 • 微生物生物量碳:土壤微生物体内的碳,是活性有机碳的一部分。 • 易氧化碳:能被高锰酸钾氧化的有机碳,表征活性有机碳库。(2)无机碳 • 总无机碳:土壤中的所有无机碳总量。 • 碳酸盐碳:主要以方解石(CaCO₃)、白云石(CaMg(CO₃)₂)等矿物形式存在。 • 碳酸氢盐碳:土壤溶液中的可溶性无机碳,易随水流失。02按碳库的稳定性分类 • 活性有机碳库:周转快,易受环境变化影响,包括DOC、MBC、POC等。 • 慢性有机碳库:周转较慢,部分矿物结合的有机碳属于此类。 • 惰性有机碳库:高度稳定,如腐殖质碳、黑碳。03按土壤深度分布分类 • 表层土壤碳( 0–30 cm):主要受植被、微生物和人为活动影响。 • 深层土壤碳(30 cm):稳定性较高,受矿物结合和碳迁移过程影响。04按来源分类 • 植被来源碳:枯落物、根系分泌物、植物残体分解产生的碳。 • 微生物来源碳:微生物代谢及死亡后残留的碳。 • 外源输入碳:施肥、污染物沉降等外部输入的碳。这些指标可以用于研究土壤碳循环、碳固存、农业土壤管理等问题。在实际研究中,通常结合稳定同位素分析、核磁共振(N...
  • 点击次数: 0
    2025 - 04 - 09
    铁氧化物结合态有机碳在土壤碳汇和碳稳定方面有重要意义,尤其在全球气候变化和土壤碳库管理背景下,越来越受关注。但仍然存在不少研究空白。今天我们通过ChatGPT和DeepSeek两大AI平台分析一下在该领域尚未被充分研究的热点问题和潜在研究方向~一、ChatGPT分析结果01铁氧化物结合态有机碳的稳定性机制与动态过程研究方向: • 原位监测 Fe-OC 在周期性湿润/干燥条件下的稳定性。 • 利用同位素示踪和光谱技术揭示铁矿物转化(非晶态铁 → 晶态铁)对有机碳稳定的影响。研究意义:• 理解铁氧化物在不同氧化还原条件下如何稳定或释放碳,有助于预测湿地、稻田等环境下土壤碳库的动态变化,进而对碳循环建模和气候变化预测有指导意义。02铁-有机复合物中有机碳的分子特征与来源研究方向: • 利用高分辨率质谱(FTICR-MS)、X射线吸收精细结构光谱(XAFS) 等先进技术分析 Fe-OC 复合物中的有机分子组成。 • 比较不同土壤类型或植被类型下 Fe-OC 结合的有机碳来源差异。研究意义:• 搞清楚什么样的有机碳更容易与铁矿物结合,有助于优化土壤管理策略,促进碳固定,提高土壤碳汇功能。03微生物在铁氧化物-有机碳互作中的作用机制研究方向: • 研究不同功能群微生物(铁还原菌、铁氧化菌)在 Fe-OC 动态中的角色。 • 解析微生物胞外多糖(EPS)、胞外电子传递对 Fe-OC 形成和解离的影响。研究意义:• 微生物过程是土壤碳稳定的关键环节,揭示微生物与 Fe-OC 的交互机制,有助于发展基于微生物调控的土壤碳汇增强技术。04土地利用变化和管理措施对 Fe-OC 储量与稳定性的影响研究方向: • 比较不同土地利用类...
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务