028-8525-3068
新闻动态 News
News 行业新闻

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

日期: 2021-08-20
标签:

原名:Absorptive and transport roots differ in terms of their impacts on rhizosphere soil carbon storage and stability in alpine forests

译名:高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

期刊:Soil Biology and Biochemistry

IF: 7.609

发表时间:2021.08.10

第一作者:汪其同

通讯作者:尹华军

主要单位:中国科学院成都生物研究所

摘要:

根据木本植物细根形态、生理和功能特征的内在差异,可将其分为吸收根和运输根两个功能模块。不同功能模块的根系对土壤生物地球化学过程的潜在生态效应已被广泛认识。然而,由这两个根系功能模块驱动的根际土壤碳储量的大小以及碳稳定机制尚不清楚。在本研究中,我们量化了云杉人工林矿质层(0-15cm)吸收根和运输根根际土壤有机碳含量和组分,进一步通过数值模型估算了两个根系功能模块不同根际范围土壤C储量。同时,通过分析根际土壤有机碳化学特征和金属-有机复合体特征,区分两个根系功能模块对根际土壤有机碳稳定性的差异化影响。结果表明,吸收根根际土壤有机碳含量比运输根根际高15.7%,这主要是由于吸收根根际土壤有机碳的稳定性(化学抗性和金属-有机键)更强。数值模型分析表明,吸收根根际有机碳库(0.27 ~ 2.7 kg C/m2)是运输根根际(0.18 ~ 1.36 kg C/m2)的2倍。在根际1 mm范围,吸收根根际土壤有机碳储量对根际土壤有机碳总储量的贡献(63.5%)远高于运输根根际(36.5%)。上述结果表明,吸收根在高寒针叶林根际土壤碳中发挥主导作用。本研究强调基于功能的细根分类与根际土壤碳储量结合运用于陆地表面土壤碳循环模型中具有重要意义,可为准确预测高寒针叶林生态系统土壤碳动态提供科学依据。


研究背景:

土壤有机碳(SOC)的形成、稳定和周转等动态变化过程已经成为当前生态学和土壤学领域亟需解决的核心科学问题之一。根系在调控土壤碳动态中的重要作用已经得到广泛认可,并在很大程度上取决于根系功能属性特征。具体而言,作为一个高度复杂且功能异质的分支系统,根系生理代谢活性在吸收根和运输根之间具有明显差异,从而导致根际SOC固存和稳定性在不同根系功能模块间呈现出高度的异质性特征。但是,现有的根际模型和实验研究大多将根际区简单视为一个均一体,很少考虑根系生命活动诱导的根际土壤碳动态在根系功能属性分化上的变异,极大地限制了在细微尺度上对森林生态系统土壤碳固存和稳定性机制的全面认识与理解,加剧了对根际土壤碳储存和持久性的评估和预测的复杂性。

研究内容:

本研究以我国西南地区一个75年的云杉(Picea asperata)人工林为研究对象,通过分离吸收根和运输根两个功能模块并采集相应的根际土壤(图1),评估了根际土壤碳含量在两个根系功能模块之间的差异,并估算了它们对根际土壤有机碳库的相对贡献。通过对土壤化学特征(C官能团和MOC含量)的表征,区分了两个根系功能模块间根际土壤有机碳稳定性的差异。鉴于根系对土壤有机碳动态的“双刃剑”效应(即对土壤有机碳储存和稳定的正或负影响),我们假设,由于根系C输入数量和质量的内在差异,吸收根和运输根会对根际有机碳储量和稳定性产生不同的影响。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图1野外采样点布置示意图(A)、细根功能模块分离及根际土壤采集流程图(B)

主要结果:

1)吸收根和运输根根际SOC浓度和组分差异

两个根系功能模块对根际SOC浓度和组分的影响存在差异。吸收根根际土壤有机碳浓度比运输根高15.7% (表1)。两个根系功能模块根际有机碳中惰性C组分的比例均超过总有机碳的50%(表1),且吸收根根际显著高于运输根根际,而活性C组分的百分比表现出相反趋势。


表1 吸收根和运输根根际SOC浓度以及活性碳和惰性碳占比

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

2)SOC稳定性的化学指标

吸收根的根际alkyl-C的比例比运输根根际高17.9%,而O-alkyl-C的比例降低了2.2%(表2)。吸收根根际SOC的疏水性指数和芳香性指数分别比运输根根际高13.33%和33.3%。与运输根根际相比,吸收根根际MOC中Fe和Al离子的含量分别高33.3%和41.6% (图2)。


表2 吸收根和运输根根际SOC的官能团特征

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性


高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图2 金属有机复合体中Fe和Al离子浓度


3)根际SOC含量和SOC稳定性的关系

Pearson相关分析表明,土壤有机碳的化学保护对根际土壤有机碳含量有一定影响。各有机碳组分中,根际有机碳含量与惰性C含量的相关性最强(图3)。根际土壤有机碳含量随有机碳化学保护程度的增加而增加。其中,根际土壤有机碳浓度与alkyl-C比例、SOC的疏水性和芳香性、Fe-MOC含量和Al-MOC呈显著正相关关系,但与O-alkyl-C比例呈显著负相(图3)。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图3 SOC浓度与SOC理化特性间的Pearson相关系数矩阵。


4)基于模型估算的吸收根和运输根根际SOC储量

吸收根单位面积根长显著高于运输根,根直径则呈相反趋势;结果导致吸收根对根际土壤体积的贡献率高于运输根(表3)。在距离根表面0.5 mm处,吸收根的根际土壤体积比运输根高33.8%。当根际范围扩大到2mm时,两个根功能模块的根际土壤体积差异增加到74.8%(表3)。

除根际土壤体积和SOC含量外,数值模型估算的根际土壤有机碳储量在两个根系功能模块间也存在显著差异。各模拟根际范围下,吸收根根际土壤有机碳储量(0.27 ~ 2.7 kg C/m2)显著高于运输根根际(0.18 ~ 1.36 kg C/m2)。在0.5 ~ 2 mm的根际范围内,吸收根根际SOC库占根际SOC总量的60%以上,且随根际范围的增加而增加(60.1% ~ 66.4%);吸收根根际有机碳库是运输根根际有机碳库的1.51 ~ 1.98倍(图4)。

表3 吸收根和运输根根际土壤体积

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图4 吸收根和运输根根际SOC储量

结论:

本研究发现吸收根和运输根对森林根际土壤碳储量的调节作用不同。总的来说,吸收根根际土壤碳储量几乎是运输根根际的两倍,这主要是因为吸收根根际土壤有机碳的稳定性较高(图5)。随着根际范围的增加,吸收根对根际土壤碳库贡献的主导作用逐步增强。本研究为理解森林生态系统根系在土壤碳动态中的重要作用提供了新的视角。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图5 吸收根和运输根差异化调控根际SOC储量和稳定性的概念框架图



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务