028-8525-3068
新闻动态 News
News 技术交流

农业生物质原料 纤维素、半纤维素、木质素测定

日期: 2021-08-20
标签:

1、范围

本标准规定了农业生物质原料中纤维素和半纤维素含量测定的高效液相色谱方法,以及木质素含量测定的紫外分光光度方法和重量方法。

本标准适用于农作物秸秆纤维素、半纤维素及木质素的测定。

2、规范性引用文件

GB/T 6682分析实验室用水规格和实验方法

NY/T 3492 农业生物质原料 样品制备

3、试剂和材料

除非另有说明,所有试剂均为分析纯的试剂,色谱用水为GB/T 6682规定的一级水,其他使用三级水。

3.1乙醇:95%.

3.2 72%硫酸溶液:量取665 mL硫酸(98%),缓缓注入300 ml水中,冷却,摇匀。

3.3 碳酸钙。

3.4 D-纤维二糖、D(+)葡萄糖、D (+)木糖、D(+)半乳糖、L(+)阿拉伯糖、D(+)甘露糖标准品:纯度≥95%。

4、仪器和设备

4.1 分析天平:感量0.1 mg。

4.2 索氏抽提器:250 mL。

4.3 电热鼓风干燥箱:温度可控制在(45±3)℃和(105±3)℃。

4.4 恒温水浴锅:温度可控制在(30±3)℃ 。

4.5 高压蒸汽灭菌器:温度可控制在(121±3)℃ 。

4.6 马弗炉:可程序开温,温度可控制在(575±25)℃ 。

4.7 耐压试管:螺纹具塞,耐压≥60psi。

4.8 真空过滤器:配玻璃砂芯坩埚(G4)。

4.9 高效液相色谱仪:配示差折光检测器。

4.10 紫外-可见分光光度计:可在 320 nm处测定吸光值。

4.11  微孔过速器:带0.22μm水相微孔滤膜。


5、分析步骤:

试样制备


按照NY/T 3492的规定执行。


5.2

抽提

5.2.1水抽提

称取2g~10g试样(精确至0.1 mg)于已称重的滤纸筒中,将滤纸筒放入索氏抽提器的抽提筒内,连接已干燥至恒重的接收瓶,由抽提器冷凝管上端加入190 mL水,于电热套上加热,使水不断回流抽提(4次/h~5次/h),一般抽提6h~8h。抽提完成后,关闭加热套,将索氏抽提器冷却至室温。


5.2.2乙醇抽提

将5.2.1水抽提后的抽提筒连接已干燥至恒重的接收瓶,由抽提器冷凝管上端加入190 mL乙醇,于电热套上加热,使乙醇不断回流抽提(6次/h~10次/h),一般抽提16h~24h。抽提完成后,关闭加热套,将索氏抽提器冷却至室温。经两步抽提后的生物质试样(即不含抽提物试样)在(45±3)℃干燥箱中干燥至恒重,称量试样质量精确至0.1 mg。


5.3

两步法酸水解

5.3.1坩埚恒重

将玻璃砂芯坩锅(G4)置于马弗炉中,在(575±25)℃下灼烧至恒重。将坩埚从马弗炉中取出后放入干燥器冷却,称量坩埚质量精确至0.1 mg。


5.3.2浓酸水解

称取300.0mg(精确至0.1mg)不含抽提物试样至耐压试管,每个试样做2次以上平行实验。向耐压试管中加入3.00 mL 72%硫酸溶液后立即混合均匀,将耐压试管放入(30±3)℃水浴中,5 min~10min搅拌一次。恒温60 min后取出,向耐压试管中加入84.00 mL水,拧紧盖子混合均匀。


5.3.3糖的回收率

用于计算回收率的糖标准溶液称为糖回收标准溶液,包括D(+)葡萄糖、D (+)木糖、D (+)半乳糖、L(+)阿拉伯糖、D(+)甘露糖。糖回收标准溶液的糖浓度应该与检测试样的糖浓度接近。称量每种糖的质量精确至0.1 mg,放入耐压试管中,加入10.0 mL水,再加入348μL72%硫酸溶液,拧紧盖子混匀。用微孔过滤器过滤,分装于样品瓶中,冷冻储藏,使用时取出解冻并摇匀。


5.3.4稀酸水解

将装有试样和糖回收标准溶液的耐压试管放入高压蒸汽灭菌器中,121℃水解1 h,待水解产物冷却至室温后,通过玻璃砂芯坩埚(G4)过滤,用锥形瓶收集滤液约50 mL,转移至具塞容器0℃~4℃储藏,于24h内进行纤维素和半纤维素测定,6 h内进行酸溶木质素的测定。


5.4

测定

5.4.1酸溶木质素

使用5.3.4酸水解溶液,用紫外-可见分光光度计在320 nm处测量液体试样的吸光值。用水作紫外-可见分光光度计空白,用水稀释试样至吸光值为0.7~1.0,记录稀释倍数,记录吸光值精确到0.001。


5.4.2酸不溶木质素

5.4.2.1用大于50 mL的热水冲洗100 mL具塞耐压试管中残留的酸不溶残渣,使残渣全部保留在玻璃砂芯坩埚(G4)中,并用真空过滤器抽干。在(105±3)℃烘干玻璃砂芯坩埚(G4)和酸不溶残渣至恒重,记录玻璃砂芯坩埚(G4)和酸不溶残渣质量,精确到0.1mg。

5.4.2.2将玻璃砂芯坩埚(G4)及酸不溶残渣置于马弗炉中(575±25)℃灼烧至少3 h,直至所有有机物被灰化。升温速率控制在10℃/min,以防止试样燃烧以及强气流引起的试样机械损失。灰化结束后降温至105℃,取出放入干燥器中冷印。称量坩埚和灰分质量精确到0.1 mg。


5.4.3碳水化合物

5.4.3.1色谱条件

色谱柱:聚苯乙烯二乙烯苯树脂铅型糖分析柱,配备相应除灰保护柱。

流动相:水。

流速:0.6mL/min。

柱温:80℃~85℃。

进样量:20μL。

检测器:示差折光检测器,检测器温度尽可能接近柱温箱温度。

5.4.3.2标准曲线的绘制

参照表1中建议的浓度范围准备D-纤维二糖、D(+)葡萄糖、D(+)木糖、D (+)半乳糖、L(+)阿拉伯糖、D(+)甘露糖的混合标准溶液,使用四点校正法。分别吸取20μL标准溶液注入高效液相色谱仪,在5.4.3.1色谱条件下测定标准溶液的响应值(峰面积),以浓度为横坐标、峰面积为纵坐标,绘制标准曲线。

农业生物质原料 纤维素、半纤维素、木质素测定

表1 糖标准溶液的建议质量浓度范围


5.4.3.3 试样溶液测定

取20 mL 5.3.4酸水解液体到50 mL锥形瓶中,缓慢加入碳酸钙将水解液中和至pH5~6。待试样沉淀后轻轻倒出上清液。将上清液用微孔过滤后进行高效液相色谱分析。由标准曲线回归方程计算试样中的D(+)葡萄糖、D(+)木糖、D (+)半乳糖、(+)阿拉伯糖和D(+)甘露糖含量。

注:检测试样中纤维二糖的含量高于3 mg/mL说明水解作用不完全。在纤维二糖之前有峰存在,表明试样中糖发生了过度水解。



6、结果计算

6.1

酸溶木质素含量


试样中的酸溶木质素含量ASL,以质量百分数(%)表示,按式(1)计算。

农业生物质原料 纤维素、半纤维素、木质素测定


6.2

酸不溶木质素含量

试样中的酸不溶木质素含量AIL,以质量百分数(%)表示,按式(2)计算。

农业生物质原料 纤维素、半纤维素、木质素测定


6.3 

木质素含量

试样中的总木质素含量Lig,以质量百分数(%)表示,按式(3)计算。

农业生物质原料 纤维素、半纤维素、木质素测定


6.4

纤维素和半纤维素含量

6.4.1糖回收率

D-纤维二糖、D(+)葡萄糖、D (+)木糖、D(+)半乳糖、L(+)阿拉伯糖、D(+)甘露糖的回收率Ri,以质量百分数(%)表示,按式(4)计算。

农业生物质原料 纤维素、半纤维素、木质素测定


6.4.2纤维素和半纤维素含量计算

6.4.2.1试样中的葡萄糖、木聚糖、半乳聚糖、阿拉伯聚糖、甘露聚糖的含量Zi,以质量百分数(%)表示,按式(5)计算。

农业生物质原料 纤维素、半纤维素、木质素测定


6.4.2.2试样中纤维素含量Cel,以质量百分数(%),按式(6)计算。

农业生物质原料 纤维素、半纤维素、木质素测定


6.4.2.3试样中半纤维素含量Hem,以质量百分数(%)表示,按式(7)计算。

农业生物质原料 纤维素、半纤维素、木质素测定

注:考虑农作物秸秆中组成半纤维素的阿拉伯糖、甘露糖和半乳糖含量较低,秸秆中半纤维素含量也可以木聚糖含量表示,

测定结果用平行测定的算术平均值表示,结果保留2位有效数字。



7、精密度

在重复性条件下获得的2次独立测定结果的绝对差值不得超过算术平均值的10%。

农业生物质原料 纤维素、半纤维素、木质素测定







  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务