028-8525-3068
新闻动态 News
News 技术交流

土壤中过氧化氢酶、过氧化物酶、硝酸盐还原酶的检测方法

日期: 2021-08-20
标签:
过氧化氢酶--滴定法


01
实验试剂

1.0.3%的过氧化氢溶液:将30%过氧化氢稀释100倍。 

2.3N硫酸:吸取10mL盐酸用蒸馏水稀释至50ml。

3.0.1N高锰酸钾溶液:1.58g高锰酸溶于100ml水。  

02
主要仪器

万分之一分析天平、震荡器、滴定管、试管夹

03
试样的制备

取新鲜的实验室待测样品充分混匀后,按四分法缩减至100g,粉碎,然后全部通过10目孔径筛,装入样品袋备用。

04
实验方法

1.称取2g试样于50ml离心管中,加40ml蒸馏水,5ml0.3%过氧化氢溶液于震荡机震荡20min,取出后加入5ml3N硫酸,过滤后取25ml滤液与150ml三角瓶中,用0.1N高锰酸钾滴定至淡粉红色。

2.空白:不加土样, 其他操作与样品试验相同。

05
计算方法

 过氧化氢酶活性= (V-VS)C×51/V0×17/W

 V:为滴定空白所用的KMnO4体积;

 VS:为滴定样品所用的KMnO4体积;

 C: 为KMnO4浓度;

 V0:为滴定体积25ml;

 W:为土重;


土壤中过氧化氢酶、过氧化物酶、硝酸盐还原酶的检测方法
过氧化物酶--比色法

01
试剂配制

     1.1%邻苯三酚溶液:称取1g邻苯三酚,用蒸馏水融至100ml。
     2.0.5%H2O2溶液:取1ml30%H2O2稀释至60ml。
     3.乙醚
     4.0.5mol/L HCL:吸4.17mL的浓盐酸溶于100mL水
     5.PH4.5柠檬酸磷酸缓冲溶液:0.1mol/L柠檬酸溶液: 19.2g C6H7O8溶至1L。0.2mol/L磷酸氢二钠溶:53.63gNa2HPO4.7H2O或者71.7g Na2HPO4.12H20溶至1L。取10.65ml柠檬酸和9.35mINa2HPO4混匀(用量较多可以乘以倍数配制),之后再用这两种溶液调节PH即可。
     6.重铬酸钾标准溶液:0.75g重铬酸钾溶于1L0.5mol/LHCL溶液中。此时的溶液相当于50ml醚中含有5mg紫色没食子素。
02
主要仪器

    万分之一分析天平、恒温摇床、分光光度计

03
试样的制备

     取新鲜的实验室待测样品充分混匀后,按四分法缩减至100g,粉碎,然后全部通过10目孔径筛,装入样品袋备用。

04
分析步骤

     1.试样溶液提取

称取试样1g,精准至0.001g,置于50ml离心管中,然后注入10m1%邻苯三酚溶液和2ml0.5%H2O2溶液。震荡后放置30°C恒温培养箱中培养2小时。取出待测。

     2.空白溶液制备

除不加待测样品外,应用的试剂和步骤操作同4.1。

     3.对照试样溶液制备

除用10 mL蒸馏水代替基质(邻苯三酚溶液)外,应用的试剂和步骤操作同4.1。

     4.标准曲线绘制

取重铬酸钾标准溶液0、1、2、4、6、8ml于比色管中用0.5mol的HCL稀释至50ml。定容后,在分光光度计。上于430nm处比色测定。以吸光度为横坐标,以浓度为纵坐标绘制标准曲线。 

     5.试样测定

试样滤液加4mlPH4.5的柠檬酸-磷酸缓冲溶液,再加35ml乙醚, 用力震荡数次,萃取30min。最后,将含溶解的紫色没食子素的着色乙醚相比色。比色波长为430nm。为了防止因乙醚引起的误差,每比色一次用无水乙醇洗涤比色槽一次。 

05
结果计算
  
     过氧化氢酶活性,以2h后,1g土壤生成的紫色没食子素毫克数表示。

过氧化物酶活性= (a样品-a空白-a无基质) ×V/m

a为标曲上相对应的浓度。

V为显色体积,即为乙醚的体积35ml。

m为样品重量g。


土壤中过氧化氢酶、过氧化物酶、硝酸盐还原酶的检测方法
硝酸盐还原酶--比色法

01
实验试剂

1.1% KNO溶液;

2.1%葡萄糖;

3.CaCO3 

4.铝钾钒饱和液;

5.酚二磺酸:取3g重蒸酚与37g21.0ml)浓硫酸混合,在沸水浴上回流加热6h

6.10% NaOH

7.KNO3 标准液:精确称取16.3052g重结晶KNO3 溶于蒸馏水中并稀释至1L。使用前,将标准液再进行稀释100倍(1ml0.1mgNO3---N)。

02
主要仪器
  

万分之一分析天平,恒温箱,水浴锅,分光光度计

03
试样的制备

取新鲜的实验室待测样品充分混匀后,按四分法缩减至 100g,粉碎,然后全部通过10目孔径筛,装入样品袋备用。 

04
实验过程
  
     1.试样溶液提取,测定

1g土壤置于100ml减压三角瓶中,加20mgCaCO3 1ml 1% KNO。仔细混合后,加1ml葡萄糖作为氢的供体,抽气3min,稍摇荡三角瓶,置于30℃恒温培养24h

培养结束后,加50ml水,1ml铝钾钒液。取20ml液移于磁皿上蒸干。加1 ml酚二磺酸处理10min。再加15ml蒸馏水,用10% NaOH调至微黄色,定容后于分光光度计上于400500处进行比色。

     2.对照试样溶液制备

用灭菌土壤(180℃3h)代替试样作对照,其余步骤同4.1

     3.空白溶液制备

除不加待测样品外,应用的试剂和步骤操作同4.1。

     4.标准曲线绘制

吸取50ml KNO3 标准溶液,置于磁皿中,在沸水浴上蒸干,残渣用2ml酚二磺酸处理10min。再加15ml蒸馏水,定容至500ml(1ml含0.01mgNO3---N))。吸取此溶液5-40ml于50ml容量瓶中,用10% NaOH调至微黄色,定容后于分光光度计上于400—500处进行比色,以光密度为纵坐标,浓度为横坐标,绘制标准曲线。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
  • 点击次数: 0
    2025 - 05 - 22
    文献解读原名:Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide译名:土壤有机碳阈值控制肥料对全球农田碳积累的影响  期刊:Nature CommunicationsIF:14.7发表日期:2025.3第一作者:凌俊  中国农业大学资源与环境科学学院养分利用与管理国家重点实验室# 背景恢复土壤肥力和缓解全球变暖的举措在于重建土壤有机碳(SOC)。氮(N) 肥对作物产量至关重要,由于颗粒有机碳(POC)和矿物结合有机碳(MAOC)对氮肥施用的响应不同,氮肥施用对土壤碳积累的影响难以预测。为了阐明这些影响,我们通过全球荟萃分析与大陆规模的田间试验相结合,研究初始SOC含量如何与氮肥相互作用来影响全球农田土壤的SOC积累。# 假设(1)氮肥施用促进了植物生产力和大团聚体的形成,从而增加了POC的积累和稳定;(2)在土壤SOC匮乏的土壤中,资源化学计量和微生物养分需求之间的不平衡阻碍了微生物残体碳(MBC)的形成和POC的分解,从而削弱了MAOC的积累;(3)较高的微生物代谢效率和微生物残体量,再加上矿物保护,增加了富含SOC土壤中MAOC的含量。# 材料与方法(1)为了确定初始SOC含量是否影响POC和MAOC响应氮肥的全球变化,我们编制了一个数据库,包括来自全球118个野外站点的609个POC和MAOC变化的配对观察值(图1),涵盖了非常广泛的初始SOC含量范围(0.79~46.1g kg-1);图1研究地点的全球分布(2)中国四个试验地点位于曲周(QZ,9.49 g kg-1)、长武(CW,9.51 g kg-1)、四平(SP,16.3 g kg-1)和雅安(YA,17.4 g kg...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务