028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 河流表层中溶解性黑碳的特征

日期: 2024-08-30
标签:
文献解读| 河流表层中溶解性黑碳的特征

原名:Characteristics of dissolved black carbon in riverine surface microlayer

译名:河流表层中溶解性黑碳的特征

期刊:Marine Pollution Bulletin

IF:5.3

发表日期:2023.07

第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室

一、背景

黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。

表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。

二、科学问题

(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。

(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。

三、材料与方法

(1)SML水样采集于2020年10月东部PR上、中、下游的沙绵(SM:23.1◦N/113.2◦E)、帕周(P:23.1◦N/113.4◦E)和黄蒲(HP:23.1◦N/113.5◦E)。

文献解读| 河流表层中溶解性黑碳的特征

(2)SML样品的采集使用预先清洗的定制旋转鼓采样器(长50 cm,直径30 cm,转速为73.5 r/min。

(3)测定指标:DOC(总有机碳(TOC)分析仪),DBC(采用Dittmar(2008)描述的BPCA方案),DBC的δ13C分析(作者2021年出版论文中相同的方法)。

(4)数据分析:利用斯皮尔曼相关系数研究DBC与DOC之间的相关性,采用了单因素方差检验来分析不同采样点间的DBC组成和δ13C值的差异。

BPCA操作方法将冻干的沉积物样品(50 mg)置于10 mL玻璃安瓿中。加入2 mL 65%硝酸后,将安瓿密封,放入100 mL聚四氟乙烯内衬不锈钢反应容器中。将反应容器紧密封闭,然后在180℃的烤箱中加热8h。在反应容器中加入了大约100 μL的水,以保持安瓿内外的稳定的蒸汽压,并防止安谱瓶爆炸。反应容器在室温下冷却,将安谱瓶中的溶液转移到4 mL小瓶中,在50℃的高压氮气流中干燥。样品在1 mL超纯水中重新溶解,用注射器过滤器(13 mm×0.22 μm,PTFE,ANPEL实验室技术)过滤,用岛津LC-20AT高效液相色谱(HPLC)测量BPCAs,并配备岛津SPDM20A光电二极管阵列探测器(PAD)。测量了三至六取代酸BPCA,包括1,2,3-苯三甲酸和1,2,4-苯三甲酸(B3CA)、1,2,4,5-苯四甲酸、1,2,3,5-苯四羧酸、1,2,3,4-苯四甲酸(B4CA)、1,2,3,4,5-苯五甲酸(B5CA)和1,2,3,4,5,6-苯六甲酸(B6CA)。除了市售的1,2,3,5-B4CA和1,2,3,4-B4CA外,通过使用BPCA标准溶液的外部校准曲线(线性回归r2≥0.999)对BPCA进行定量,并根据其异构体(即1,2,4,5-苯四甲酸)的校准曲线进行定量。所有BPCA标准品均购自Sigma-Aldrich。校准曲线的浓度水平分别为3.2、4.8、6.4、8、16、32、48、64和80 ng/μL。使用海洋沉积物参考物质(NIST SRM 1941b)测试了实验室开发的BPCA方法的准确性,结果为9.88±0.26 g BC/kg沉积物(或55.37±1.46 g BPCA-C/kg总有机碳(TOC),三个重复)。重复分析的变异系数<5%。BC氧化过程中产生的羧酸官能团的平均数量(Ave-BPCA)的不确定度为±0.02。对每批样品进行工艺空白试验,以进行质量控制。

同位素测测定对选定的沉积物样本进行了δ13C特征分析,以确定两种最丰富的BPCA,即B5CA和B6CA。使用较大样本量的沉积物(450 mg)对BPCA进行δ13C分析。与BPCA程序类似,沉淀物样品在10 mL安谱瓶中用2 mL 65%硝酸在180℃下氧化8h,然后用预清洁的玻璃纤维过滤器(直径2 cm,Whatman)过滤。然后在50℃的高压氮气流下去除硝酸,将样品重新溶解在1 mL超纯水中,并使用填充有阳离子交换树脂的玻璃柱(Dowex 50 WX8 400,Sigma-Aldrich)进行阳离子去除。从阳离子交换柱中获得约50 mL水溶液,将其在-20℃下冷冻并随后冷冻干燥。然后将样品重新溶解在通过将3.8 mL HPLC级三氟乙酸(TFA)与1000 mL超纯水混合制备的水溶液(pH:~1.3)中,并用制备液相色谱法(预LC)分离B5CA和B6CA。重新注入收集的B5CA和B6CA级分的等分试样,未发现可检测到的污染物。使用Surveyor HPLC系统通过Isolink接口(Thermo Scientific)连接到Delta V IRMS,测量分离的B5CA和B6CA的δ13C。δ13C值以相对于维也纳Pee-Dee-Belemnite(VPDB)的mil(‰)表示。B5CA和B6CA的回收率分别用标准品和玉米炭样品进行了测试,B5CA和B6 CA(五个重复)的回收率范围分别为81.2±2.6%和88.0±2.8%。

四、结果

(1)PR上、中和下游的DBC含量排序为:SM>PZ>HP。DBC和DOC之间存在显著相关性(p < 0.05),在亚马逊流域低流量时期不存在相关性。SML样品中DBC氧化产物中B5CA和B6CA占BPCAs的50%以上。B4CA、B5CA和B6CA均具有δ13C特征,这表明C3植物的生物质燃烧可能是主要来源。B6CA/B5CA比值相对较低,但与(B5CA+B6CA)与总BPCA的比值相比,SML中的DBC表现出更高的芳香族缩合程度。

文献解读| 河流表层中溶解性黑碳的特征


(2)河流DBC的芳香结构高度凝聚,其次是沿海DBC,而海洋的芳香凝聚程度最低。PR SML中的DBC密度比普遍低于全球河流DBC的密度比。

文献解读| 河流表层中溶解性黑碳的特征


(3)低径流期北极河流观测到的低B6CA/B5CA比值突出了水文因素对DBC芳香族凝聚的潜在影响。B6CA/B5CA和(B5CA+B6CA)/总BPCA低于DBC河流,如北极河流和亚马逊流域,分别为0.77-0.86和0.59-0.68。

文献解读| 河流表层中溶解性黑碳的特征


五、结论

(1)SML的DBC含量(100.9~166.6μg/ L)低于全球河流水域平均水平,遵循PR上>中>下游的趋势。

(2)DBC(BPCAs)的分子标记及其δ13C值在各采样点间无统计学差异(p > 0.05),表明以生物质燃烧为主要来源。

(3)SML中较低的DBC含量和DBC/DOC比值表明,SML的独特特性,如光化学和絮凝过程,可能会影响DOC浓缩芳香组分的含量和缩合程度。

(4)在有机富集的生态系统中,SML中的光化学过程可以通过絮凝触发DBC最浓缩和疏水组分的聚集和沉积。

更多实验检测相关讯息so栢晖生物了解更多~


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 11 - 24
    土壤是一个复杂的三相(固、液、气)多孔介质,其物理结构(如团聚体、孔隙度)是一切生命活动的基础。微塑料的存在会改变孔隙结构、影响水分运移、影响气体交换等等,它可以吸附环境中的重金属、持久性有机污染物等,成为这些有毒物质的“载体”,改变它们在土壤中的分布和生物有效性,加剧复合污染。微塑料的测定方法主要有上述提到的光谱法、显微分析法和热裂解法等,如下是热裂解测定方法介绍。BAIHUI微塑料定性定量测定分析可测定12种主要微塑料!聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯树脂(ABS)、丁苯橡胶(SBR)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚氨酯(PU:MDI型)、聚对苯二甲酸乙二醇酯(PET)、尼龙6(N6)、尼龙66(N66)01微塑料测定流程方法简述:称取过2 mm筛的风干土壤5 g于250 mL烧杯中,加入50 mL饱和氯化钠溶液,磁力搅拌30 min。静置3 h,悬浮上清液倒入250 mL烧杯。改用50 mL ZnCl2(密度约1.6 g/cm3)浮选一次,磁力搅拌30 min,静置3 h,上清液倒入前述250 mL烧杯。将250 mL烧杯中液体用不锈钢滤膜抽滤,收集滤膜,加30 mL过氧化氢,超声10 min, 60 ℃加热24 h。收集溶液,用不锈钢滤滤膜抽滤,收集滤膜,晾干备用。将滤膜放入烧杯,加有机溶剂,超声10 min,溶剂浓缩至1 mL。取50 μL至80 μL裂解样品杯,通风橱内挥干,加CaCO3稀释剂2 mg,少量玻璃棉覆盖,待测。校准曲线绘制称取以CaCO3稀释剂为基质的微塑料标准物质(12种微塑料),0.1、0.5、1.0、2.0、4.0 mg,加入至裂解样品杯中,少量玻璃棉覆盖,配制成标准系列。02测定结果展示03分析软件-F-Sear...
  • 点击次数: 0
    2025 - 11 - 05
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务