028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

日期: 2024-07-01
标签:
文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.

译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。

期刊:Soil Biology and Biochemistry

IF:9.7

发表日期:2024.8(网络首发2024.5)

第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)

一、背景

陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图1 微生物驱动的有机碳和无机碳周转关系示意图

二、科学问题

1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;

(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;

(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。


三、材料与方法

(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。

(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(表1)。

(3)设置样地并用5cm土钻取土,并将土壤分成不同粒径(图2)。

(4)测定指标:pH、SWC、STC、DOC、SOC、SIC、MBC、AG、BG、16s rRNA、ITS。

表1 不同地形基本特征

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性


文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图2 样地和采样示意图


四、结果

(1)坡向和坡位对土壤团聚体分布和稳定性有显著影响(p<0.05),ms的大粒团聚体(>2 mm)主要向(<0.25>2 mm)主要向2 ~ 0.053 mm粒径转移,这导致阳坡和阴坡的MWD由上至下逐渐减小,但均显著高于滨江(图3)

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图3青藏高原MS、WR和SS上、中、底位置土壤团聚体分布(a)和团聚体平均重径(b)


(2)土壤的生物和非生物性质随坡向、坡位和团聚体粒径的变化而变化(图4)。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图4 青藏高原MS、WR和SS上部、中部和底部土壤团聚体的生物和非生物特性


(3)细菌多样性高于真菌多样性,对环境因素的敏感性较低。优势菌群的丰度分布不均,主要受坡位、坡向和团聚体粒径分数的影响。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图5 弦线图显示青藏高原阳坡、阴坡和河滨的大小组分团聚体在门水平上的主要细菌(a)和真菌(c)的相对丰度。NMDS结果显示了土壤细菌(b)和真菌(d)微生物群落的变化


(4)根据相关性分析发现,团聚体中细菌和真菌收到土壤理化性质的显著影响,其中pH显著影响细菌和真菌的群落组成和群落多样性。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图6 影响青藏高原MS、SS和WR不同大小组分细菌(a)和真菌(b)群落组成和多样性的土壤生物和非生物因子环境因素之间的相关性


(5)pH与STC、SOC、AG、BG、SWC和Chao1指数呈显著指数负相关;在MS、SS和WR不同位置的所有团聚体中,与SIC、DOC和Shannon指数呈指数正相关。由拟合方程可以看出,pH对酸性土壤(pH < 7)STC、SOC、AG、BG和Chao1的影响显著大于碱性土壤(pH > 7),而对SIC和DOC的影响则相反。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图7 pH和其他环境因子的回归分析图


(6)pH通过调节团聚体内的酶活性和微生物群落,促进无机碳向有机碳的转化,从而扩大土壤“碳汇”的规模,减少二氧化碳的排放。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图8 pH调节下微生物驱动的无机碳和有机碳动态转化与土壤团聚体周转的协调示意图


五、结论

(1)小团聚体(主要为<0.053 mm)的微生物活性最低,而溶解有机碳(DOC)、SIC和pH值则相反。

(2)细菌多样性大于真菌多样性,对环境因素的敏感性较低,优势门丰度主要受坡度影响,团聚体大小对群落结构的影响分布不均。

(3)高寒山地的有机碳周转效率依次为向阳坡高寒草甸(MS)>河滨高寒湿地(WR)>阴坡高寒草甸(SS),粉砂+黏土组分>大团聚体>微团聚体。

(4)pH值是土壤团聚体中微生物驱动的有机-无机碳动力学的主要非生物调节因子。pH随粒径的增大抑制了酶活性,降低了细菌群落组成和多样性,然而真菌群落组成降低,真菌群落多样性增加,促进了MBC、DOC和SIC向SOC过渡。这导致土壤团聚体中储存的总碳增加,从而促进了土壤大团聚体结构及其稳定性。


更多相关检测信息搜栢晖生物了解更多。

  • 最新资讯 MORE+
  • 点击次数: 0
    2026 - 01 - 13
  • 点击次数: 0
    2026 - 01 - 05
    文献解读原名:Fast Decomposition of Nitrogen-Rich Mineral-Associated Organic Matter in Soils译名:土壤中富氮矿物结合有机质的快速降解期刊:Global Change BiologyIF: 12.0  发表日期:2025年8月第一作者:贾娟副研究员 通讯作者:冯晓娟研究员01.背景MAOM储存土壤中大部分碳氮,主要由富氮微生物残体组成,传统观点认为其通过矿物吸附稳定存在。然而,MAOM的分解潜力及内在调控机制尚不明确:氮富集化合物是因强矿物吸附而稳定,还是因化学易降解性而快速分解?有机-有机相互作用对MAOM稳定性的影响也不清楚。此外,MAOM碳饱和机制存在争议,需明确其内在性质(组成、碳负载)对持久性的调控作用。这些问题限制了对土壤碳库动态的预测能力,亟需深入研究。02.科学问题富氮MAOM的分解潜力是否更高?其内在性质(分子组成、碳负载)如何调控分解?03.材料与方法(1)构建13C标记的微生物/植物源MAOM,通过30天培养监测CO2释放及同位素特征,结合热解-气相色谱/质谱和氨基酸分析表征分子组成。(2)实验1:在不同纯矿物(蒙脱石、高岭石和针铁矿)上构建了组成和 OC 负载量不同的微生物源和植物源 MAOM(即MAOM-microbe和MAOM-plant),随后与来自两个森林和两个草地地点的表层土壤混合后进行分解,这些地点具有不同的气候和土壤特性。(3)实验2:在蒙脱石基质上构建了三种不同有机碳负载的微生物来源MAOM(MAOM-microbe),并在同一草地表层土壤中进行分解。(4)实验3:将实验1获得的部分MAOM-microbe经高压灭菌和洗涤处理以去除富含氮的细胞内化合物,随后在人工土壤中与未经灭菌的MAOM-microbe共同进行降解,以比较不同组...
  • 点击次数: 0
    2025 - 12 - 26
    原名:Long-Term Active Rather than Passive Restoration Promotes Soil Organic Carbon Accumulation by Alleviating Microbial Nitrogen Limitation in an Extremely Degraded Alpine Grassland译名:长期主动恢复比被动恢复更能促进土壤有机碳的积累:主要是通过缓解土壤微生物氮限制期刊:Advanced ScienceIF:15.6发表日期:2025.11第一作者:弓晋超(四川农业大学)01摘要草地退化会打乱土壤里微生物的养分循环,但在草地恢复过程中,“微生物缺不缺氮(氮限制)”到底怎么影响土壤有机碳(SOC)的变化,我们还不太清楚。这项研究在青藏高原的严重退化草地上,对比了持续 10 年的两种恢复方式:(1)主动恢复:播种本地植物种子(2)被动恢复:用沙障等措施保护,让其自然恢复研究把微生物的“代谢特征”也纳入进来,比如:基于化学计量(元素比例)判断的养分限制、微生物碳利用效率(CUEST),同时把 SOC 分成两部分来看:(1)POC(颗粒有机碳):相对“新鲜/活跃”的那部分(2)MAOC(矿物结合有机碳):更稳定、更不容易分解的那部分结果发现:(1)主动恢复能明显缓解微生物的缺氮问题(降低 44–71%),从而让 SOC 储量大幅增加:(a)表层土 SOC 从 0.81 增到 3.15 kg m⁻²(增加 291–467%)(b)深层土 SOC 从 0.54 增到 3.08 kg m⁻²(增加 291–467%)(2)同时,主动恢复让 CUEST 下降(表层降 54%,深层降 34%),并显著提高两类碳:(c)POC 增加 483–557%(d)MAOC...
  • 点击次数: 0
    2025 - 12 - 04
    CT技术是一种非破坏性三维成像技术,利用X射线扫描样品,通过重建算法生成样品内部结构的高分辨率三维图像。CT技术通过实现从土壤微观结构到植物器官内部形态的无损三维成像与定量分析,为土壤学、植物学及其界面过程的多尺度机制研究提供了前所未有的视角与方法支撑。 1.土壤应用方向分析:土壤孔隙结构与水分、气体运移土壤团聚体形成、稳定性及养分保持机制土壤动物活动痕迹及其对土壤结构的影响土壤-微生物空间分布与微生境分析 2.植物应用方向分析:植物根系构型、分布及其与土壤互作茎秆、叶片、种子、果实等器官的内部三维结构植物维管系统、孔隙网络与水分输导研究植物响应环境胁迫(如干旱、淹水、机械损伤)的结构变化 3. 土壤-植物交叉研究方向根-土界面互作过程与资源获取策略根系生长对土壤结构的塑造效应根际微域中水分、养分与微生物的空间异质性植物根系与土壤动物、微生物的互作可视化如下是土壤、植物相关样品CT检测相关图例展示和相关分析介绍,如需检测该指标欢迎联系文末工作人员详细沟通~01土壤柱状样品 1、取样:用小铲子清除土壤表面的杂物,CT扫描原状土柱采集使用高强度抗压PVC管(高10 cm,内径5 cm)进行操作。取样前将PVC管一端打磨成刀刃状打入土中进行取样,采集深度为5-10 cm。采样完成后,用保鲜膜对PVC管进行密封用于Micro-CT扫描。 2、检测 Micro-CT扫描通过计算机控制射线源发出射线束,旋转样品台承载所取的原状土柱,以0.5°/s的速度旋转,平板探测器负责采集扫描获得的系列投影数据,最后计算机通过将采集到的投影数据重建为土壤的横切片图像,每个样品可重建出大概1600张横切面图像。扫描过程中电压最大为160 kV和电流50 μA左右,扫描精度为25.5 μm。 3、图像分析 ...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区龙潭街道成业路7号联东U谷二期7栋10楼
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务