028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

日期: 2022-04-20
标签:

原名:Resource limitation and modeled microbial metabolism along an elevation gradient

译名:微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

期刊:Catena

IF:5.198

发表时间:2021.10

第一作者:Zhang, SH


摘要

土壤微生物对全球碳—气候反馈具有重要影响,同时其代谢活性通常受到养分有效性的限制。海拔变化对土壤微生物群落具有重要影响,但其对微生物资源限制的影响及其对碳动态的调控机制尚未阐明。本研究中,我们在秦岭(Qinling Mountains)沿海拔梯度从1308 – 2600 m之间设置了6个梯度进行土壤取样,通过测定和计算胞外酶化学计量比并模拟微生物代谢以揭示土壤微生物沿海拔梯度的资源限制特征和主要代谢过程(如:有机碳分解速率和微生物呼吸速率)的变化规律。还测定了年平均气温(MAT)、年平均降水量(MAP)、土壤总C:N:P比值、土壤有效养分以及微生物生物量等环境指标。结果表明:该地点的土壤微生物均受到N限制,并且随着海拔升高,土壤微生物N限制显著增强。随着海拔升高,有机碳分解速率(M)和微生物呼吸速率(Rm)显著降低。这表明,由海拔变化引起的温度升高可能缓解了微生物N限制并导致土壤C释放增加。冗余分析(RDA)表明,MAT和土壤养分化学计量比(尤其是DOC:TDN)是解释土壤微生物资源限制特征和主要代谢过程沿海拔梯度变化的主要环境因子。综上,本研究表明,由于土壤C:N比值的变化,高海拔地点的微生物遭受更强的N限制,可能有利于土壤有机碳积累,该结果为气候变暖背景下微生物介导的土壤C释放过程提供了见解。

研究背景

温度是微生物代谢过程的主要驱动因子并决定了微生物利用养分的能力。因此,了解微生物过程如何响应温度变化,对于预测气候变化对微生物养分获取的影响具有重要意义。随着海拔升高,环境温度下降,因此沿海拔梯度取样有助于阐明微生物养分获取和代谢特征对温度变化的响应机制。尽管一些研究已经表明微生物特性对海拔引起的温度变化响应十分敏感,而这种响应直接受到海拔变化引起土壤养分有效性变化的影响。但海拔变化对微生物资源限制和代谢特征的具体影响机制还未阐明。为了理解微生物资源的限制和微生物代谢过程,并揭示其沿海拔梯度变化的潜在机制,我们在中国太白山(Taibai Mountain of China)进行了沿海拔梯度的土壤取样。并提出以下假设:1.该地区的土壤微生物可能受到N和P限制的影响,且N和P限制相对影响可能随着海拔变化而变化;2.土壤微生物资源限制和主要微生物过程可能受到气候因素的间接影响,但主要受有效养分和微生物生物量的直接影响。

主要结果

1. 植物特性和土壤理化性质沿海拔的变化

植物特性和土壤理化性质在不同海拔梯度具有显著差异。具体地,植物叶片和根组织C、N和P浓度在中间海拔梯度最高,但C:N:P计量比沿海拔梯度没有显著变化。高海拔梯度的土壤C:N比值尤其是DOC:TDN显著高于低海拔区域,土壤湿度(SM)随海拔升高而增加。


2. 土壤胞外酶化学计量比微生物资源限制

结果表明,ln(BG):ln(NAG + LAP)和ln (BG):ln(AP) 比值沿海拔梯度显著降低。但ln(NAG + LAP):ln(AP)比值显著增加(图2a, 2b和2c)。并且,所有样点均分布于图3a 的1:1线之下,图3c 的1:1线之上,表明该研究区域的土壤微生物普遍受到强烈N限制(图3c)。海拔对微生物代谢特征具有显著影响(图3d和3e)。向量长度(Vector lengths与微生物C限制程度正相关)在1308 m处为1.47 ± 0.1,在2292 m处为1.35 ± 0.1。向量角度(Vector angles)均小于45°,并沿海拔梯度显著降低,表明微生物N限制沿海拔梯度增强。

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图2 土壤胞外酶化学计量沿海拔梯度的变化规律

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图3 土壤微生物沿海拔梯度的资源限制变化规律


3. 有机碳降解和微生物呼吸模拟

结果表明,有机碳降解速率(M)随海拔升高而显著降低,微生物呼吸速率(Rm)则是先增加再降低(图4)。

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图4 模拟微生物代谢过程沿海拔梯度的变化规律


4. 环境变量共同调节微生物资源限制、有机碳降解速率和微生物呼吸速率

有机碳降解速率和微生物呼吸速率在海拔梯度上与资源有效性显著相关。具体地,平均向量长度和向量角度随着SOC降解速率和微生物呼吸速率升高而增加(图5)。RDA分析表明,土壤养分化学计量比(总养分和有效养分)对土壤微生物资源限制特征变化的贡献大于气候因子(MAT和MAP)和植物叶片和根组织化学计量比的贡献。特别地,土壤有效养分比值比总养分比值的影响更大。RDA分析还表明,土壤有效养分比值和气候因子可以解释大部分有机碳降解速率和微生物呼吸速率的变异。

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图5 微生物代谢过程与资源限制特征之间的关系

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图6 环境变量对微生物资源限制特征变化的贡献

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图7 环境变量对微生物代谢过程变化的贡献

结论

随着海拔升高,土壤微生物N限制增强,同时有机碳降解速率和微生物呼吸速率下降。该结果表明在全球变暖背景下,高海拔地区土壤微生物N限制可能得到缓解并最终增加土壤C损失。土壤C:N比值尤其是DOC:TDN是预测土壤微生物N限制以及有机碳降解速率和微生物呼吸速率的关键因子,该结果表明土壤微生物N限制可能通过改变土壤C、N平衡进而决定土壤C动态。因此,在全球气候变化背景下,我们的研究强调了需要将酶介导的微生物降解过程作为改进土壤碳动态预测模型的一种手段。



  • 最新资讯 MORE+
  • 点击次数: 0
    2026 - 01 - 30
    岗位一招聘岗位:技术支撑招聘人数:3人      综合月薪:7k-15k岗位职责1、项目前期对接(回复技术咨询,确认实验方案等);2、监督项目进度(与实验室对接检测要求,监督进度、确认数据);3、项目后期处理(追踪数据发放,协助处理项目结算等);4、老客户维护和新客户开发。岗位要求1、生态学、农学、土壤学等专业硕士学历;2、有相关实验经验优先(氨基糖,木质素酚,土壤酶活,微生物碳氮磷,有机氮组分、新污染物、代谢组学等),熟悉常规实验方法;3、熟悉相关实验室仪器设备(TOC仪,元素分析仪,液相等),具备相关实验数据的分析能力;4、性格外向,沟通能力强,能适应偶尔出差;岗位二招聘岗位:实验员招聘人数:8人      综合月薪:5k-10k岗位职责1、完成组内实验;2、完成领导安排的工作;3、进行实验的部分开发与验证。岗位要求1、生态学、农学、土壤学等专业硕士学历,优秀本科生亦可;2、有土壤、植物等理化实验经验;3、性格乐观开朗,主动性强;工作仔细耐心,有研究创新精神。岗位三招聘岗位:品牌经理招聘人数:15人     综合月薪:8k-20k岗位职责1、负责所在区域高校、单位的开拓推广工作,进入高校开展线下讲座、业务宣讲等活动;                                   2、定期拜访高校和企业相关重点客户,维持良好的检测合作关系;3、主动学习各种专业知识,关注行业动态及政策;4、负责完成上级领导布置的业绩目标。岗位要求1、生态学、农学、土壤学等专业硕士学历;2、有相关实验经验优先(氨基糖,木质素酚,土...
  • 点击次数: 0
    2026 - 01 - 13
  • 点击次数: 0
    2026 - 01 - 05
    文献解读原名:Fast Decomposition of Nitrogen-Rich Mineral-Associated Organic Matter in Soils译名:土壤中富氮矿物结合有机质的快速降解期刊:Global Change BiologyIF: 12.0  发表日期:2025年8月第一作者:贾娟副研究员 通讯作者:冯晓娟研究员01.背景MAOM储存土壤中大部分碳氮,主要由富氮微生物残体组成,传统观点认为其通过矿物吸附稳定存在。然而,MAOM的分解潜力及内在调控机制尚不明确:氮富集化合物是因强矿物吸附而稳定,还是因化学易降解性而快速分解?有机-有机相互作用对MAOM稳定性的影响也不清楚。此外,MAOM碳饱和机制存在争议,需明确其内在性质(组成、碳负载)对持久性的调控作用。这些问题限制了对土壤碳库动态的预测能力,亟需深入研究。02.科学问题富氮MAOM的分解潜力是否更高?其内在性质(分子组成、碳负载)如何调控分解?03.材料与方法(1)构建13C标记的微生物/植物源MAOM,通过30天培养监测CO2释放及同位素特征,结合热解-气相色谱/质谱和氨基酸分析表征分子组成。(2)实验1:在不同纯矿物(蒙脱石、高岭石和针铁矿)上构建了组成和 OC 负载量不同的微生物源和植物源 MAOM(即MAOM-microbe和MAOM-plant),随后与来自两个森林和两个草地地点的表层土壤混合后进行分解,这些地点具有不同的气候和土壤特性。(3)实验2:在蒙脱石基质上构建了三种不同有机碳负载的微生物来源MAOM(MAOM-microbe),并在同一草地表层土壤中进行分解。(4)实验3:将实验1获得的部分MAOM-microbe经高压灭菌和洗涤处理以去除富含氮的细胞内化合物,随后在人工土壤中与未经灭菌的MAOM-microbe共同进行降解,以比较不同组...
  • 点击次数: 0
    2025 - 12 - 26
    原名:Long-Term Active Rather than Passive Restoration Promotes Soil Organic Carbon Accumulation by Alleviating Microbial Nitrogen Limitation in an Extremely Degraded Alpine Grassland译名:长期主动恢复比被动恢复更能促进土壤有机碳的积累:主要是通过缓解土壤微生物氮限制期刊:Advanced ScienceIF:15.6发表日期:2025.11第一作者:弓晋超(四川农业大学)01摘要草地退化会打乱土壤里微生物的养分循环,但在草地恢复过程中,“微生物缺不缺氮(氮限制)”到底怎么影响土壤有机碳(SOC)的变化,我们还不太清楚。这项研究在青藏高原的严重退化草地上,对比了持续 10 年的两种恢复方式:(1)主动恢复:播种本地植物种子(2)被动恢复:用沙障等措施保护,让其自然恢复研究把微生物的“代谢特征”也纳入进来,比如:基于化学计量(元素比例)判断的养分限制、微生物碳利用效率(CUEST),同时把 SOC 分成两部分来看:(1)POC(颗粒有机碳):相对“新鲜/活跃”的那部分(2)MAOC(矿物结合有机碳):更稳定、更不容易分解的那部分结果发现:(1)主动恢复能明显缓解微生物的缺氮问题(降低 44–71%),从而让 SOC 储量大幅增加:(a)表层土 SOC 从 0.81 增到 3.15 kg m⁻²(增加 291–467%)(b)深层土 SOC 从 0.54 增到 3.08 kg m⁻²(增加 291–467%)(2)同时,主动恢复让 CUEST 下降(表层降 54%,深层降 34%),并显著提高两类碳:(c)POC 增加 483–557%(d)MAOC...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区龙潭街道成业路7号联东U谷二期7栋10楼
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务