028-8525-3068
新闻动态 News
News 行业新闻

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累

日期: 2022-03-08
标签:

原名:Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues

译名:干旱阈值和土壤碳氮比控制着土壤微生物残体的积累

期刊:Communications Earth & Environment

IF12.298

发表时间:2021.11.18

第一作者Zhiguo HaoYunfei ZhaoXia Wang

通讯作者Xia Wang

主要单位:兰州大学地球与环境科学学院

摘要:

微生物残体有助于土壤碳(C库的形成和稳定,但影响其在全球范围内积累的因素尚不清楚。该研究综合了268个来自草原和森林生态系统的氨基糖浓度数据(微生物残体的生物标志物)进行Meta分析。结果发现,土壤有机碳(SOC)、土壤碳氮比和干旱指数是预测微生物残体C积累的关键因子。超过土壤的临界干旱指数和土壤碳氮比(分别为~0.768~9.583)后,土壤微生物残体量急剧下降。干旱指数阈值与湿润气候范围有关,而土壤碳氮比的阈值可能与真菌丰度的急剧下降相一致。尽管主导因子在生态系统和气候带之间存在差异,但土壤SOC和干旱指数始终重要,该研究结果强调气候和土壤环境可能控制微生物残体积累。 

研究背景:

土壤是陆地生态系统中最大的C储存库。C收支的微小变化可能会对陆地生态系统的结构和功能产生深远影响。作为土壤的原住民,微生物可以通过分解代谢和合成代谢来调节土壤C的动态。其中,微生物合成代谢在促进土壤有机质稳定储存方面的作用日益突出。微生物利用所获得的植物残体进行群落构建,其死亡后,微生物衍生的C(体内周转产物,包括死亡的微生物残留物和部分代谢物)通过化学吸附(与矿物质结合)或物理包裹(团聚体)的形式被封闭而稳定在土壤中,能够有效抵抗外界因素的干扰,长期留存。有研究表明,微生物残体C占土壤SOC库很大比例,甚至高达80%。虽然微生物量CSOC的贡献微小,但微生物残体CSOC的贡献不容忽视。微生物群落对环境变化高度敏感。例如土壤性质和气候变化,可以通过影响微生物的生理特性(如微生物生长速率和生长效率)以及生化特性来影响微生物代谢物向土壤的转移及其稳定性。考虑环境变化对微生物群落内部特征的影响,存在一个微生物残体积累最大化的最佳环境条件范围。确定微生物生长的最佳环境条件,使微生物的残体积累量最大,SOC分解量最小,有利于土壤固C管理。目前,氨基糖生物标志物越来越多地被用来研究微生物残体的储存机制。由于土壤中只有少部分的氨基糖与微生物生物量有关,而植物中不含氨基糖,因此,利用氨基糖可以追踪到微生物残体的遗存。在大多数研究中,只有氨基葡萄糖、氨基半乳糖、氨基甘露糖和胞壁酸4种类型的氨基糖被定量测定,其中氨基葡萄糖、氨基半乳糖和胞壁酸最为丰富,在这4种氨基糖中,真菌产生大部分的氨基葡萄糖,而细菌主要产生胞壁酸,只产生少量的氨基葡萄糖。氨基糖生物标志物的利用,有助于广泛量化土壤氨基糖含量的全球异质性及其预测因子。

研究内容 

本研究通过收集了森林和草原生态系统0 ~ 20cm土层的268个微生物残体数据点的氨基糖数据进行Meta分析。

假设:

1.气候、地理位置和土壤理化性质对微生物残体积累有不同的影响,它们的相对重要性依次为地理位置>气候>土壤理化性质。

3.存在一个微生物残体积累的最佳环境条件范围或阈值。

 

主要结果:

1. 微生物残体的地理分布格局

表层土壤氨基糖含量范围为0.04 ~ 11.21 mg g-1,平均值为2.25 ± 0.13 mg g-1,中位数为1.68 mg g-1。森林和草原的氨基糖浓度无显著差异,但气候区之间存在显著差异。其中,温带地区的氨基糖浓度显著高于亚热带地区,其他气候区之间的氨基糖浓度差异不显著。植被类型与气候区之间对氨基糖浓度没有显著交互作用。亚热带森林与温带森林之间和亚热带森林与温带草原之间氨基糖浓度存在显著差异。整体上,氨基糖浓度与SOC浓度显著相关。

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累 

1. 研究中使用的数据集。 a研究地点;b不同生态系统和气候区之间的Kruskal–Wallis检验。

2. 全球尺度上微生物残体的预测因子

随机森林模型表明,本研究中考虑的所有环境变量都是影响氨基糖浓度的重要预测因子。结构方程模型( SEM )解释了氨基糖65.4 %的变异。在考虑变量间的因果关系后,SOC、土壤碳氮比和干旱指数仍具有较标准的总效应。

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累 

2. 环境变量与氨基糖在全球范围内的关系模型。a结构方程模型( SEM )b环境变量之间的相关性。c SEM的标准总效应。d随机森林模型(各环境要素对土壤氨基糖绝对含量的重要性)

3. 微生物残体对干旱、土壤碳氮比和土壤有机碳的非线性响应

确定了氨基糖积累的干旱指数( 0.768 )和土壤碳氮比( 9.583 [ln ( x + 1 )转化值0.57ln ( x )转化值2.26]增加的阈值水平。在此阈值以上,氨基糖浓度显著降低。对于SOC,阈值处的曲率并不影响原趋势,且随着SOC的增加,氨基糖的累积量呈线性增加。

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累 

3. 氨基糖对干旱指数和土壤碳氮比的响应模型。ab氨基糖对干旱指数和土壤CN比的非线性响应;cd干旱和土壤CN比阈值下各变量预测值的差异。

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累 

4. 氨基糖对土壤有机碳(SOC)的响应模型。a氨基糖对SOC的非线性响应;b SOC阈值下变量预测值的差异。

 

4. 不同生态系统类型和气候区微生物残体的预测因子。

随机森林模型显示SOC和干旱指数是亚热带草原、温带草原、亚热带森林和温带森林氨基糖最重要的预测因子。土壤pH和碳氮比也显著预测了草地的氨基糖含量,而绝对纬度则预测了森林的氨基糖含量。与其他类别相比,土壤粘粒含量是影响温带森林氨基糖的最主要因素,而土壤p H的影响不显著。

结构方程模型中,SOC是氨基糖的主要正向调节因子。在草地中,干旱指数和土壤pH是次要的最重要的预测因子,而绝对纬度强烈预测温带草地中的氨基糖。在亚热带森林中,土壤pH对氨基糖的影响仅次于SOC,其次是土壤碳氮比和土壤粘粒含量。温带森林土壤碳氮比对氨基糖类表现出较强的负效应。

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累 

5. 不同生态系统和气候区的随机森林模型。a亚热带草原;b温带草原;c亚热带森林;d温带森林。

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累 

6. 生态系统和气候区的结构方程模型

干旱阈值和土壤碳氮比控制着土壤微生物残体的积累 

7. 环境变量对土壤氨基糖绝对含量的标准总效应。

 

总结:

该研究清晰地阐明了SOC和干旱是影响全球和区域微生物残体积累的主要因素。在全球气候变化的背景下,微生物群落可能经历一个最理想的厌氧阶段。在此阶段,土壤微生物C泵介导的土壤C捕获过程将表现出最佳的响应状态。在全球尺度上,干旱指数为~ 0.768或土壤碳氮比为~ 9.583时微生物残体积累量出现峰值。高于这个水平,微生物残体量明显减少。这可能是由微生物群落中优势种类的变化引起。


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 11 - 24
    土壤是一个复杂的三相(固、液、气)多孔介质,其物理结构(如团聚体、孔隙度)是一切生命活动的基础。微塑料的存在会改变孔隙结构、影响水分运移、影响气体交换等等,它可以吸附环境中的重金属、持久性有机污染物等,成为这些有毒物质的“载体”,改变它们在土壤中的分布和生物有效性,加剧复合污染。微塑料的测定方法主要有上述提到的光谱法、显微分析法和热裂解法等,如下是热裂解测定方法介绍。BAIHUI微塑料定性定量测定分析可测定12种主要微塑料!聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯树脂(ABS)、丁苯橡胶(SBR)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚氨酯(PU:MDI型)、聚对苯二甲酸乙二醇酯(PET)、尼龙6(N6)、尼龙66(N66)01微塑料测定流程方法简述:称取过2 mm筛的风干土壤5 g于250 mL烧杯中,加入50 mL饱和氯化钠溶液,磁力搅拌30 min。静置3 h,悬浮上清液倒入250 mL烧杯。改用50 mL ZnCl2(密度约1.6 g/cm3)浮选一次,磁力搅拌30 min,静置3 h,上清液倒入前述250 mL烧杯。将250 mL烧杯中液体用不锈钢滤膜抽滤,收集滤膜,加30 mL过氧化氢,超声10 min, 60 ℃加热24 h。收集溶液,用不锈钢滤滤膜抽滤,收集滤膜,晾干备用。将滤膜放入烧杯,加有机溶剂,超声10 min,溶剂浓缩至1 mL。取50 μL至80 μL裂解样品杯,通风橱内挥干,加CaCO3稀释剂2 mg,少量玻璃棉覆盖,待测。校准曲线绘制称取以CaCO3稀释剂为基质的微塑料标准物质(12种微塑料),0.1、0.5、1.0、2.0、4.0 mg,加入至裂解样品杯中,少量玻璃棉覆盖,配制成标准系列。02测定结果展示03分析软件-F-Sear...
  • 点击次数: 0
    2025 - 11 - 05
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务