028-8525-3068
新闻动态 News
News 行业新闻

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

日期: 2022-03-01
标签:

原名:Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: A global meta-analysis

译名:氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

期刊:Soil Biology and Biochemistry

IF:8.312

发表时间:2021年12月6日

第一作者: Junxi Hu

通讯作者:黄从德

合作作者:Shixing Zhou, Xiong Liu, Feike A. Dijkstra

主要单位:

四川农业大学林学院,长江上游生态林业工程四川省重点实验室,成都;

国家林业和草原局,长江上游森林资源保护与生态安全重点实验室,四川成都;

摘要

人工N输入的增加改变了全球土壤碳储量,但微生物残体(氨基糖)对添加N的土壤碳的贡献尚不清楚。在此,我们对32篇文献进行了meta分析,并评估了N添加对微生物残体量的影响。结果表明,N添加的总体效应显著提高了真菌(葡萄糖胺,GluN)和细菌(胞壁酸,MurN;半乳糖胺,GalN)残体;但对微生物总残体量(总氨基糖)无显著影响。N添加对氨基糖的影响与生态系统类型有关。N添加增加了农田中GluN、MurN、GalN和总氨基糖的含量,而在森林中N添加仅增加了MurN的含量。在农田中,施N对微生物残体含量的影响取决于施N是单独施N还是与磷钾复合施N。其中,施N对细菌MurN、GalN、真菌GluN和总氨基糖含量无显著影响。而添加NPK显著提高了所有个体(GluN、MurN和GalN)和总氨基糖含量。此外,高施N量(>150 kg N ha−1 yr−1)和长期施N量(>10年)显著提高了农田各氨基糖和总氨基糖的含量,这可能是由于高施N量和长期施N刺激了微生物的生长。我们的研究结果表明,N添加增加了农田微生物残体量和森林细菌残体量,为全球持续的人为N输入改善微生物源碳的封存提供了重要信息。

关键词

N添加;微生物残体;土壤有机碳;氨基糖

前言

土壤有机质(Soil organic matter, SOM)是陆地上最大的有机碳(SOC)库,在全球碳C循环中发挥着重要作用。微生物在SOM转化过程有两种关键而又截然不同的作用。一方面,微生物可以通过分解代谢活动分解SOM并释放CO2;另一方面,微生物可以利用植物源C生成微生物产物或将其残体转化为非生命的SOM,从而促进SOM的形成和稳定。氨基糖是微生物残基和植物的组成成分,具体来说,葡萄糖胺(GluN)主要来源于真菌细胞壁的几丁质,胞壁酸(MurN)只存在于细菌的肽聚糖中,而半乳糖胺(GalN)主要由细菌合成。最近使用氨基糖生物标记物的研究表明,微生物残体可能占一半以上SOC,因此,需要对氨基糖进行研究,以提高对涉及微生物的C循环过程的认识。

关于氨基糖对N沉降的响应,目前还没有共识,研究表明,N沉降对氨基糖的影响是正面、负面或中性。这些不一致的模式可能归因于模拟N沉降速率的差异以及真菌和细菌生长所需N的差异。全球N肥的使用深刻影响了微生物群落和残体产量。此外,在大多数农业系统中,也会施用其他养分,如磷(P)和钾(K);在这种情况下,观察到的效应不能仅仅归因于N输入。综上所述,在不同生物群落中,N沉降和N肥施用对土壤微生物残体的影响尚缺乏共识。

基于32篇已发表的研究在内的全球数据集,我们采用荟萃分析方法研究了N沉降或N肥对土壤氨基糖的影响。我们的目标是回答以下问题:(1)不同的氨基糖(GluN、MurN、GalN和总氨基糖)对N添加的响应一致吗? (2)氨基糖对N添加的响应是否取决于P或K的联合添加? (3)氨基糖对N添加的响应是否取决于N添加速率、N添加持续时间和生态系统类型?

主要结果

1. 氨基糖对N添加的响应

在整个数据集中,不同的氨基糖对N的添加有不同的反应。其中,N添加增加了GluN、MurN和GalN的含量,但对总氨基糖含量没有显著影响(图1)。N添加对氨基糖的影响取决于生态系统类型。特别是,N添加增加了农田中GluN、MurN、GalN和总氨基糖的含量(图2),而在森林中,N添加仅增加了MurN的含量(图3)。

在农田生态系统中,N添加效应取决于是否施用其他养分。单独添加N对总氨基糖(Fig. 2a)、GluN (Fig. 2b)、MurN (Fig. 2c)和GalN (Fig. 2d)的含量没有显著影响,但添加NPK显著提高了各氨基酸和总氨基糖的含量(Fig. 2a-d)。此外,N添加对氨基酸含量的影响与N添加速率和时间有关,高N添加速率(>150 kg N ha−1 yr−1)和长期N添加速率(>10年)提高了所有氨基酸和总氨基酸含量(图2a-d)。除高施N量(>150 kg N ha−1 yr−1)对总氨基糖含量无显著影响外(图2a)。在森林生态系统中,N添加对氨基糖的影响取决于是否添加其他营养物质。仅施N对总氨基糖和GluN含量没有显著影响(图3a),但添加NP显著降低了它们的含量(图3a-b)。此外,低施N量(<50 kg N ha−1 yr−1)和短期施N量(<5年)增加了MurN含量(图3c)。

2. 氨基糖的响应与微生物PLFAs、TN、pH、SOC、N添加速率、N添加时间的相关性,以及在MAP、MAT和海拔的变化

GluN自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH、SOC、TN和N添加率的自然对数响应比显著正相关,但与海拔、MAP(年均温)、MAT(年均降雨量)和N添加时间的自然对数响应比不显著相关(图4)。MurN自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH和SOC的自然对数响应比呈正相关(图5)。GalN自然对数响应比与细菌PLFAs,真菌PLFAs,总PLFAs,PH和N添加率的自然对数响应比呈正相关(图6)。总氨基糖自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH、SOC、TN和N添加率的响应均呈显著正相关(图7)。

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图1 N添加对氨基糖的影响

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图2农田生态系统中总氨基糖(a)、GluN(b)、MurN(c)和GalN(d)含量对N添加的加权响应比和95%置信区间

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图3 森林生态系统中总氨基糖(a)、GluN(b)、MurN(c)和GalN(d)含量对N添加的加权响应比和95%置信区间

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图4 GluN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图5 MurN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图6 GalN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图7 总氨基糖的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

讨论

1. N添加对氨基糖的总体影响

总的来说,我们的结果表明,N添加显著增加了真菌源GluN和细菌源MurN和GalN的含量(图1)。一方面,我们发现氨基糖的响应与微生物PLFAs的响应呈正相关,这表明,N添加下,氨基糖的增加可能归因于更活跃的微生物生物量有利于残体量的积累。另一方面,添加N可以增加有毒金属(如铝)的渗透势和有效性,抑制微生物呼吸,减少微生物合成代谢产物分解,从而增加微生物氨基糖的积累。但是,我们发现N添加对总氨基糖的正向影响较小,尽管N添加显著提高了GluN、MurN和GalN的含量。这可能与生态系统类型引起的混杂效应有关,因为N之外的添加增加了农田中总氨基糖的含量(图 2a),而它对森林中总氨基糖有轻微的负面影响(图 3a)

2. 生态系统类型、N添加组合、N添加速率和N添加持续时间对氨基糖的影响

我们发现,N添加对氨基糖的影响取决于生态系统类型,其中N添加增加了农田中所有个体和总氨基糖的含量,而在森林中,它只增加了MurN的含量。农田和森林中氨基糖对N添加的不同反应可能是由于这两种生态系统类型在N添加组合、N添加速率和N添加持续时间上的差异。事实上,我们的结果表明,N添加对氨基糖的积极影响(即NPK添加,高N添加率(>150 kg N ha−1 yr−1)和长期N添加(>10年))都来自农田,而不是森林(表S1,图2,图3)。

在农田生态系统中,N添加对氨基糖的影响取决于N添加组合、N添加速率和N添加持续时间。具体来说,只有NPK添加,高N添加率(>150 kg N ha−1 yr−1)和长期施N(>10年)增加了所有单糖和总氨基糖的含量(图2a-d)。对于NPK添加对氨基糖含量的积极影响,一个可能的解释是N添加结合P和K,可能最大程度地缓解了对植物生长的营养限制,因此可能最大程度地增加了基质可用性(例如,根系分泌物、凋落物输入、TN和SOC含量),这有利于微生物生长和微生物衍生成分的生产。长期N沉降下真菌和细菌的增长进一步表明,N沉降下,氨基糖的反应可能需要很长时间来表达,可能是由于微生物残留的平均停留时间较长。

在森林生态系统中,N添加的总体效应增加了细菌MurN,而对其他氨基糖几乎没有影响。我们发现,单独添加N会增加细菌MurN的含量(图3c)。与农田相比,森林等自然生态系统中的微生物可能更受N的约束,因此森林中的微生物可能对N的添加更敏感。此外,细菌的C/N往往低于真菌,预计对N的需求量也会更高。N的添加通常会导致微生物群落从真菌向细菌为主的转变,这可能会增加细菌代谢残体的产生,从而增加细菌MurN的含量。与农田相似,N的添加对氨基糖的影响也取决于N是单独添加还是与磷结合添加。与单独添加N相比,添加NP降低了真菌GluN和总氨基糖的含量,有两种可能的解释:首先,添加NP可以缓解微生物的磷限制,并将营养限制从磷限制转变为C限制,微生物可以加速C源(氨基糖)的分解,以补偿微生物的C需求,从而降低氨基糖含量。其次,添加NP会增加了N-乙酰氨基葡萄糖苷酶(NAG)的活性,这可以有效分解微生物残留物,从而降低微生物残留物的含量。

结论

两种生态系统类型的微生物对N的反应不同。在农田中,N的添加增加了土壤中真菌GluN和细菌MurN和GalN以及总氨基糖的含量,而在森林中,N的添加只会增加MurN的含量。总的来说,我们揭示了在农田生态系统中,长期高速率的N添加可以增加微生物残体量,特别是当N与磷和钾一起施用时,这可能会因此加强微生物源C的固存。

原文网络连接:
https://doi.org/10.1016/j.soilbio.2021.108500



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
  • 点击次数: 0
    2025 - 09 - 09
    原名:Aggregate size mediates the stability and temperature sensitivity of soil organic carbon in response to decadal biochar and straw amendments译名:团聚体尺寸调控长期生物炭与秸秆添加下土壤有机碳的稳定性及温度敏感性期刊:Soil Biology & BiochemistryIF:10.3发表日期:2025年9月3日BAIHUI ORGANISMS作者简介第一作者:陈雅兰,北京师范大学环境学院励耘博士后,师从孙可教授。主要从事生物炭环境地球化学行为及环境效应的研究。以第一作者在GCB、SBB、EST、CEE等期刊上发表学术论文19篇(含共一3篇),1篇封面文章,1篇入选ESI高被引论文,引用800次,H指数17。主持国家自然科学基金青年项目、博士后基金站中特别资助、博士后基金面上项目。曾获宝钢优秀学生特等奖、北京市优秀毕业生、北师大优秀博士学位论文等荣誉。通讯作者:孙可,北京师范大学环境学院教授、博士生导师,国家杰出青年基金、国家优秀青年科学基金和北京市杰出青年基金获得者。主要从事生物炭环境地球化学行为及环境效应的研究。在GCB、SBB、EST等期刊上发表高质量SCI论文130余篇,他引7000余次,H指数51,5篇论文入选ESI高引论文。高群,北京师范大学环境学院副教授,主要从事土壤微生物学研究。相关研究成果在PNAS、Nature Communications(2篇)等国际期刊发表高质量SCI论文40篇,引用1200余次,H指数21。授权国家专利2项。荣获中国微生物生态青年科技创新优秀奖,入选中国科协青年人才托举工程及中国科协“未来女科学家计划”。01背景土壤有机碳(SOC)的温度敏感性(Q10)是调控土壤-气候反馈的关键...
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务