028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

日期: 2021-09-08
标签:

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

#01

摘要


真菌菌丝体是土壤生物地球化学循环的重要组成部分,但目前对真菌残体分解的生态控制仅限于单个地点和植被类型。通过在美国中西部温带橡树稀树草原和阔叶林中部署常见的真菌残体,评估了高质量和低质量真菌残体分解的普遍性及真菌残体分解者群落的变化。真菌残体质量对分解速率的影响在不同的地点和植被类型上差异显著,在初始阶段高质量的真菌残体比低质量的快2.5倍。在不同植被类型中,真菌残体的细菌和真菌群落与土壤微生物群落不同,并受真菌残体质量的影响。霉菌、酵母菌和富营养细菌始终主导着高质量真菌残体。研究表明,无论分解环境的差异如何,与低质量的残体相比,高质量的残体分解更快,并支持不同类型的分解微生物。

#02

关键词

真菌菌丝,真菌菌丝体,黑色素,菌根类型,残体,橡树稀树草原,温带森林

#03

研究背景

土壤碳(C)储量取决于土壤有机质输入及其随后的分解和碳损失速率之间的平衡。真菌菌丝体是土壤碳储量的主要决定因素之一。真菌菌丝生物量储量大,周转快。真菌生物量死亡(即成为残体)后迅速腐烂,并融入活微生物生物量。与其他有机物输入相比,真菌残体的高营养含量也使其成为各种分解者的重要资源。已有研究表明,真菌残体生化性状(氮(N)和细胞壁黑色素含量)是驱动真菌残体分解率的重要预测因子。与黑色素含量低、氮含量高的真菌组织(高质量底物)相比,黑色素含量高、氮含量低的真菌组织(低质量底物)的腐烂速度更慢。通过这种方式可以广泛预测分解速率。然而,目前尚不清楚环境条件如何与初始基质质量相互作用,以控制真菌残体的分解速率。

生态系统中的分解受土壤的生物和非生物特性的影响,而这些特性受植被类型,菌根共生优势类型的影响。土壤性质的差异又导致AM和EM群落中分解者生物的功能变异。因此,为探索基质质量和非生物和生物环境条件的差异如何相互作用来控制真菌坏死块腐烂提供了理想的试验平台。此外,真菌残体分解者群落不同于非根际土壤,并随着时间的推移显示出相当大的组成变化。真菌残体质量能够显著影响细菌和真菌分解者群落组,也可以通过C:N或黑色素含量的变化影响群落组成。然而这些研究都是在单个地点进行的,其普遍性仍不清楚。这项研究有助于深化影响土壤有机质快速循环组分和与快速分解相关的微生物群落的主导因素的理论理解。

#04

研究结果

真菌残体的残留量受残体质量和培养时间的影响显著,而不受植被类型的影响。高质量真菌残体平均比低质量真菌残体分解快2-3倍。然而,残体质量的影响是由培养时间调节的,质量类型之间的差异在14 天时最大(图1)。14 d后,低质量的残体在草原和森林分别增加了60%和80%,但在56 d和92 d后,两种残体的剩余质量均达到了相同的稳定值(~80%的重量损失;图1)。非线性衰变模型显示了相似的趋势,高质量真菌残体的k1值在两个位点都高得多,而k2值在不同位点和残体类型之间基本相等(图1)。

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图1:橡树草原(a)和温带森林(b)的AM主导植被(灰色圆圈)和EM相关植被(棕色三角形)中,高质量的Mortierella elongata和低质量的Meliniomyces bicolor残体的质量剩余比例


AM土壤微生物OTU多样性显著高于EM主导的植被土壤,尤其是草原土壤真菌群落和森林土壤细菌群落(图2a,b)。在两个试验点,残体上的细菌OTU多样性比周围土壤低50%(图2c),真菌OTU多样性相对于土壤也降低了,但仅在草原显著降低(图2d)。微生物多样性平均比低质量残体高20%,平均而言,高质量的残体比低质量的残体显著,在森林中的细菌和真菌都显著(图2e,f)。植被类型对微生物OTU多样性的影响普遍较低,仅AM植被对真菌的影响显著较高(图2g,h)。同样,培养时间对微生物OTU多样性的影响有限,只有细菌在森林生境培养92天后显著提高(图2i,j)。

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图2:橡树草原(a)和温带森林(b)中真菌残体及其周围土壤的细菌和真菌群落多样性指数


与OTU多样性一样,两地点土壤和残体上的细菌和真菌群落组成存在显著差异(图3)。EM植被下土壤以EM真菌和寡营养细菌为主,但AM植被下土壤有少量AM真菌,腐生真菌和寡营养细菌的比例较高(图4)。相比之下,酵母、霉菌和富营养细菌在两个地点的残体上更为常见(图4)。残体质量显著影响两个地点的细菌组成和森林的真菌群落组成。总体而言,高质量的真菌残体中,富营养菌、霉菌、酵母菌相对丰度较高,腐生真菌相对丰度较低。植被类型对微生物群落组成也有显著影响,在AM主导的植被中,真菌残体上的病原菌营养物质更丰富,EM和AM真菌在与其匹配的植被类型中分别更丰富(图4)。培养时间对两个地点真菌残体的细菌群落组成有显著影响,但对真菌群落组成无显著影响,随着时间的推移,两个地点的寡营养细菌丰度都在增加,特别是在森林的低质量真菌残体(图4)

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图3:橡树草原(a和c)和温带森林(b和d)高、低质量残体以及AM和EM主导植被下土壤中的细菌(a和b)和真菌(c和d)群落的非度量多维尺度分析

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图4:不同植被类型(AM和EM主导植被)、残体质量(高和低)和真菌残体培养阶段(14、28和42天)的细菌(a)和真菌(b)相对丰度


一些细菌和真菌属丰度的显著差异取决于残体质量。在不同地点或不同植被类型之间,高质量真菌残体上最常见的丰度较高的细菌属包括Nocardia、Mesorhizobium、Orchobactrum和Chitinophaga(图5)。在低质量的真菌残体上最常见的细菌属包括Burkholderia和Mucilaginibacter。Mortierella是两个地点内高质量真菌残体共有的属,尽管Mucor和Pochonia对高质量真菌残体的偏好相似(图6)。与低质量真菌残体呈正相关的真菌属包括Talaromyces、Clonostachys和Chaetosphaeria。

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图5:不同植被类型(AM和EM植被)对真菌属有显著影响

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图6:不同植被类型(AM和EM植被)对细菌属有显著影响



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
  • 点击次数: 0
    2025 - 09 - 04
    更多检测相关讯息搜栢晖生物了解更多~
  • 点击次数: 0
    2025 - 08 - 13
    栢晖分区服务升级通知2025年8月为进一步提升服务质量,优化检测服务体验,栢晖正式宣布完成技术对接团队分区服务升级!现将最新分区服务内容公告如下:
  • 点击次数: 0
    2025 - 08 - 13
    土壤氨基糖是指一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留以及微生物代谢产物。它们是土壤有机质的重要组成部分,具有较高的稳定性和微生物异源性,在土壤中能够长期保存。土壤氨基糖不仅是评估微生物对土壤有机碳、氮贡献的重要指标,还能通过不同组分的比值反映微生物群落组成的变化。常见的土壤氨基糖包括氨基葡萄糖、氨基半乳糖、氨基甘露糖和胞壁酸等,它们在土壤生态系统的物质循环和结构稳定中发挥着关键作用。土壤氨基糖来源:微生物合成:大部分来源于微生物残体(真菌/细菌生物量)植物输入:少量来自植物根系分泌物有机质转化:腐殖质结合态氨基糖(与铁铝氧化物共沉淀)实验方法气相色串联质谱01称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。02待水解液冷却至室温后,加入250μg肌醇。涡旋仪震荡30s混匀。取水解液于5mL离心管中,于8000rpm离心1min。取上清液1mL于50mL离心管中用氮气于吹干。用20mL纯水溶解残渣。用0.4mol/LKOH 0.01mol/LHCL调节pH至6.6~6.8。离心管以4000rpm离心10min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL左右,涡旋溶解管壁有机物后,以4000rpm离心10min,除盐。再将上清液转移到5mL衍生瓶中吹干。并加入100μg戊五醇1mL水,冻干。03 标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、0.5mg/mL氨基甘露糖,0.25mg/mL胞壁酸),50μg肌醇,100μg戊五醇,轻轻摇匀后,与样品衍生瓶一起冻干。04衍生:a) 向吹干的样品...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务