028-8525-3068
新闻动态 News
News 公司新闻

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

日期: 2024-03-13
标签:
文献解读

原名:Climate controls on nitrate dynamics and gross nitrogen cycling response to nitrogen deposition in global forest soils

译名:气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

期刊:Science of the Total Environment

IF:11.6

发表时间:2024.2

第一作者:Ahmed S. Elrys


摘要

了解氮素转化及其对氮富集响应的调控模式和控制措施,对于重新评估土壤氮素的限制或有效性及其环境后果至关重要。然而,气候条件如何影响森林土壤中硝态氮的动态以及总氮循环速率对氮富集的响应仍然只是初步了解。通过收集和分析来自231个15N标记研究的4426个独立观察和769个配对观察。研究发现,热带/亚热带森林土壤的硝化能力[总自养硝化(GAN)与总氮矿化(GNM)之比](19%)显著低于温带森林土壤(68%),这主要是由于低碳氮比和高降水分别导致热带/亚热带森林土壤的GNM和GAN较高。热带/亚热带森林土壤的硝态氮保持能力[同化硝态氮还原成铵态氮(DNRA) 和总硝态氮固定(INO3)之和与总硝化的比值](86%)显著高于温带森林土壤(54%),这主要是由于热带/亚热带地区的降水和GNM较高,刺激了DNRA和INO3结果表明,在温带土壤中,GAN与铵态氮固定(INH4)的比例显著高于热带/亚热带土壤。控制森林土壤异养硝化速率(GHN)的不是土壤因子,而是气候因子。GHN随温带地区气温升高和热带/亚热带地区降水减少而显著增加。在温带森林土壤中,总氮转化速率对氮富集不敏感。然而,在热带/亚热带森林中,氮的富集显著提高了GNM、GAN和GAN与INH4的比值,但由于微生物生物量和pH的减少,抑制了INH4和INO3研究认为,温带森林土壤具有更高的硝化能力和更低的硝酸盐保留能力,意味着更高的N损失风险。然而,热带/亚热带森林系统对N富集的响应从保守型向泄漏型转变。


研究背景

氮循环是森林生态系统功能的一个重要方面。土壤氮有效性调节森林生态系统过程和功能,即促进植物生长和生产,控制土壤氮流失风险。大多数植物可利用的氮是以无机形式存在的铵(NH₄+)和硝酸盐(NO3-)。植物以NH₄+和NO3-的形式吸收土壤中的N,但是因为硝化过程(微生物氧化有机氮以及NH₄+转变为NO3-),大部分都转化为NO3-被利用。铵氮离子往往被土壤微生物和阳离子交换过程保存,因此不容易丢失。相反,大多数异养微生物不会优先固定硝态氮离子,也不会因为携带负电荷而保持在阳离子交换位点上,因此当硝化能力高时,无机N更容易通过径流、淋滤和反硝化而损失。另一方面,以前的研究表明,增强土壤NO3-滞留能力有可能使N损失最小化。因此,土壤NO3-动态在控制植物氮供应中起主导作用;它们还对环境和土壤产生不利影响,如富营养化、温室气体排放、地下水NO3-污染和土壤酸化。因此,了解森林生态系统中调节土壤硝化和NO3-滞留能力的模式和控制措施对于重新评估土壤N限制或N有效性及其环境后果至关重要。在本研究中,将硝化能力定义为总自养硝化(GAN;微生物将NH₄+氧化成NO3-)与总氮矿化的比值(GNM),而NO3-滞留能力被定义为异化硝酸盐还原为铵(DNRA)加上总NO3-固定化(INO3, NO3-转化为有机N)与总硝化速率(包括GAN和异养硝化(GHN))的比值,代表微生物将有机N或NH₄+氧化为NO3-

土壤微生物氮循环速率受土壤理化、生物特性和气候条件的共同影响。在长时间尺度上,气候条件也会影响土壤特性,因为水热会加速化学变化(例如,热带/亚热带地区的土壤与温带地区不同)。因此,气候条件和土壤性质的差异在调节土壤硝化和NO3-保留以及N损失的能力模式中起关键作用。虽然热带/亚热带和温带地区的土壤性质和气候条件差别很大,导致这些地区的土壤总氮转化模式不同,而且温带和热带/亚热带森林土壤在硝化和NO3-保持能力的模式和控制方面的差异尚未在世界范围内得到评估。由于土壤基质有效性的增加,降水增加,微生物生物量的增加也对土壤氮动态(如GNM)产生积极影响。然而,土壤湿度的增加降低了土壤氧的有效性,导致厌氧条件,这可能抑制GAN,但增强DNRA。在全球范围内,Elrys等(2021)报道降水是GNM的主要刺激因子,GNM随着土壤pH值的降低而显著增加。然而,在低土壤pH(< 5.5)下,GAN受到抑制,这是由于降低所有分离的细菌氨(NH3)氧化剂的活性和NH3的可用性。此外,先前的研究表明,在较高的温度和湿度下,INO3和DNRA会增强。综上所述,研究假设热带/亚热带森林土壤的GNM、INO3和DNRA比温带地区高,而GAN比温带地区低,因为热带/亚热带地区的降水和温度比温带地区高,土壤pH值比温带地区低,这最终会增加温带地区土壤的硝化能力和热带/亚热带地区的NO3-保留能力(假设1)

据报道,GHN在自然生态系统中广泛存在,并且似乎与真菌活性有关,因为它们比细菌具有更高的耐酸性和更低的单位碳(C)所需氮量。然而,研究表明GHN并不局限于酸性土壤,甚至与土壤C、土壤C/N比和土壤pH没有关系。相反,Elrys等人(2023)和Zhang等人(2023)最近的分析指出,在全球尺度上,GHN随着年平均温度(MAT)的降低而显著增加。然而,这些先前的全球分析并没有分析MAT对陆地生态系统GHN的影响,这可能会影响这种关系。例如,Sun等人(2019)的结果表明,GHN在O层随着温度升高而增强,但在A层则没有,这归因于O层中基质数量较多。因此,森林土壤中含有较多基质,GHN对MAT的响应可能与之前全球meta分析中报道的不同。然而,在全球范围内,MAT对森林土壤GHN的影响尚未得到充分阐明。考虑到温度升高会增加土壤有机质降解及其微生物酶活性,从而增加土壤有机氮对异养硝化菌的有效性,研究假设森林土壤的GHN会随着温度升高而受到刺激(假设2)

在森林生态系统中,氮沉降是全球氮输入的关键来源,减少了这些生物群系的氮限制,同时增加了环境氮损失的潜在风险。因此,更好地了解总氮转化对氮富集的响应对于诊断森林生态系统土壤氮有效性和损失是必要的。热带/亚热带森林具有强风化和富氮缺磷的特点,而温带森林往往是氮限制。因此,在热带/亚热带森林中,N富集可能比在温带森林中更快地导致N饱和。当土壤生物有效氮超过土壤持氮能力时,就会发生氮素流失。然而,以往的研究结果并不一致。例如,在温带森林中,Tian等人(2018)发现总氮循环速率对氮富集的响应没有显著差异;然而,Corre等人(2007)和Tietema(1998)发现GNM、总硝化、总NH₄+固定化(INH4)和INO3对N富集有显著而积极的响应。相反,Berntson和Aber(2000)发现,温带森林中的N沉降导致INO3大幅减少。在热带森林土壤中,Corre等人(2010)和Baldos等人(2015)发现,长期施氮显著提高了GNM和总硝化作用,但抑制了INH4、INO3和DNRA,而Hall和Matson(2003)和Wang等人(2014)研究称,长期施氮对总氮循环速率没有影响。这些不同的结果表明,有必要进行全球meta分析,以分析热带/亚热带和温带森林中总氮转化速率对氮沉降的响应在多大程度上存在差异。根据N饱和假说,研究假设温带森林的土壤总N循环速率对N沉降的响应不如热带/亚热带森林,无机N添加可能会导致热带/亚热带森林更快的N饱和,从而增强GNM和GAN,但抑制INH4和INO3,最终增加N损失(即N2O排放和NO3淋溶)(假设3)

为了验证上述假设,研究进行了一项全球meta分析,以回答两个具体问题:(1)气候条件如何影响全球森林土壤中NO3-动态的模式和控制因素?(2)全球热带/亚热带和温带森林土壤总氮转化对无机氮富集的响应有何不同?该分析有助于理解森林生态系统土壤氮生产和保持过程的潜在机制及其对氮沉降的响应,最终提高对土壤氮循环对植物和生态系统功能影响的认识。


主要结果

1. 不同气候区域土壤氮循环模式

温带森林土壤的硝化能力、GAN以及GAN与INH4的比例明显高于热带/亚热带森林土壤(图1a, b)。相比之下,温带地区的NO3-滞留能力、GNM、GHN、INH4、INO3、DNRA以及NH₄+NO3-的MRT显著低于热带/亚热带森林土壤(图1c、d和图4)。


2. 土壤氮转化的控制因素

线性混合效应分析揭示了温带和热带/亚热带森林土壤中土壤总氮转化的各种控制因素(图2a-b和图4)。在这两种生态系统中,土壤硝化能力都随着土壤pH值的增加和土壤C/N比的降低而显著增加,但仅在温带森林土壤中,土壤硝化能力随着MAP和海拔的降低和MAT的增加而显著增加(图2a)。在热带/亚热带森林土壤中,土壤NO3-滞留能力随着MAP (p = 0.007)、MAT (p = 0.07)、SOC (p = 0.08)和C/N比(p = 0.014)的增加和pH的降低而增加(p < 0.0001),但在温带森林土壤中随着C/N比的增加和总氮的减少而增加(图2b)。

相关分析显示,森林土壤的硝化能力随纬度、容重、pH和MBN的增加而显著增加,但随海拔、MAP、C/N比、可提取NH₄+、GNM和INH4的降低而显著增加(图3)。相比之下,森林土壤的NO3-滞留能力随着MAP、MAT和C/N比的增加以及纬度、pH、总N和GAN的降低而显著增加(图3)。土壤NO3-与NH₄+的比率和GAN与INH4的比率随着土壤硝化能力的增强和土壤NO3-滞留能力的降低而显著增加(图3)。

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图1 温带和热带/亚热带森林土壤硝化能力(a)、总自养硝化(GAN)与总铵固定化(INH4)之比(b)NO3滞留能力(c)NH4+平均停留时间(d)的全球格局


文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图2 温带和热/亚热带森林土壤硝化能力(a)NO3−滞留能力随环境因子的斜率

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图3 特定地点参数、土壤属性和总氮转化率之间的皮尔逊相关性分析


3. 热带和温带森林土壤N循环对N沉降的不同响应

meta分析结果显示,在热带/亚热带森林土壤中,无机N的添加显著促进了GNM、GAN、可提取的NH₄+和NO3-、N2O排放以及GAN与INH4、NO3-与NH₄+的比值,但显著降低了INH4和INO3(图4a, b)。在温带森林土壤中,无机氮的添加促进净氮矿化和硝化、GHN、可提取态NH₄+和NO3-、NO3-与NH₄+的比值以及N2O排放。无机氮增加了热带/亚热带森林土壤有机碳和H+浓度,但抑制了MBC和微生物呼吸速率(图4a, c)。还促进了温带森林土壤总氮和有机碳(图4a, c)。总氮产量和土壤性质对无机氮富集的响应随N添加速率(kg N ha-1 year-1)和土层而异(图5a-d)。在热带/亚热带森林中,GNM只对低N添加速率(< 100)有正响应,而在热带/亚热带和温带森林中,总硝化只对高N添加速率(> 100)有正响应(图5a, b)。在热带/亚热带森林中,无机氮的添加抑制了MBC和土壤H+浓度,而在温带森林中则促进了它们。GNM仅在热带/亚热带森林有机层显著增强(图5d)。添加无机氮促进了温带森林土壤有机层的总硝化作用,而促进了热带/亚热带森林土壤矿物层的总硝化作用(图5c、d)。在土壤矿物层中,添加无机氮促进了温带森林土壤H+浓度,而抑制了热带森林土壤H+浓度。

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图4 (a)温带和热带/亚热带森林土壤氮素转化速率和土壤性质对无机氮添加的综合响应(bc)温带和热带/亚热带森林土壤的总氮转化率和土壤性质对无机氮添加的相对比

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图5 温带森林(ac)和热带/亚热带森林(bd)不同氮肥添加量(ab)和土层(cd)GNMGN速率和土壤性质对无机氮添加的影响


# 栢晖 #

—特色检测指标—

土壤、植物酶活检测

氨基糖、木质素PLFA、CUE

磷组分、有机酸、有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定

了解更多检测信息

按区域添加微信咨询详情

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应


文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
  • 点击次数: 0
    2025 - 04 - 29
    01按照土壤碳的形态分类(1)有机碳 • 总有机碳:土壤中所有来源的有机碳总量。 • 可溶性有机碳:可溶于水的有机碳,影响土壤碳循环的活性部分。 • 颗粒态有机碳:粒径通常在53 μm–2 mm之间的有机碳,较易分解。 • 矿物结合有机碳:与矿物颗粒结合的有机碳,较为稳定。 • 轻组有机碳:通过浮选法分离出的轻组有机碳,主要由未完全分解的有机质组成。 • 重组有机碳:通过浮选法分离出的重组有机碳,主要由金属氧化物结合的有机质组成。 • 微生物生物量碳:土壤微生物体内的碳,是活性有机碳的一部分。 • 易氧化碳:能被高锰酸钾氧化的有机碳,表征活性有机碳库。(2)无机碳 • 总无机碳:土壤中的所有无机碳总量。 • 碳酸盐碳:主要以方解石(CaCO₃)、白云石(CaMg(CO₃)₂)等矿物形式存在。 • 碳酸氢盐碳:土壤溶液中的可溶性无机碳,易随水流失。02按碳库的稳定性分类 • 活性有机碳库:周转快,易受环境变化影响,包括DOC、MBC、POC等。 • 慢性有机碳库:周转较慢,部分矿物结合的有机碳属于此类。 • 惰性有机碳库:高度稳定,如腐殖质碳、黑碳。03按土壤深度分布分类 • 表层土壤碳( 0–30 cm):主要受植被、微生物和人为活动影响。 • 深层土壤碳(30 cm):稳定性较高,受矿物结合和碳迁移过程影响。04按来源分类 • 植被来源碳:枯落物、根系分泌物、植物残体分解产生的碳。 • 微生物来源碳:微生物代谢及死亡后残留的碳。 • 外源输入碳:施肥、污染物沉降等外部输入的碳。这些指标可以用于研究土壤碳循环、碳固存、农业土壤管理等问题。在实际研究中,通常结合稳定同位素分析、核磁共振(N...
  • 点击次数: 0
    2025 - 04 - 09
    铁氧化物结合态有机碳在土壤碳汇和碳稳定方面有重要意义,尤其在全球气候变化和土壤碳库管理背景下,越来越受关注。但仍然存在不少研究空白。今天我们通过ChatGPT和DeepSeek两大AI平台分析一下在该领域尚未被充分研究的热点问题和潜在研究方向~一、ChatGPT分析结果01铁氧化物结合态有机碳的稳定性机制与动态过程研究方向: • 原位监测 Fe-OC 在周期性湿润/干燥条件下的稳定性。 • 利用同位素示踪和光谱技术揭示铁矿物转化(非晶态铁 → 晶态铁)对有机碳稳定的影响。研究意义:• 理解铁氧化物在不同氧化还原条件下如何稳定或释放碳,有助于预测湿地、稻田等环境下土壤碳库的动态变化,进而对碳循环建模和气候变化预测有指导意义。02铁-有机复合物中有机碳的分子特征与来源研究方向: • 利用高分辨率质谱(FTICR-MS)、X射线吸收精细结构光谱(XAFS) 等先进技术分析 Fe-OC 复合物中的有机分子组成。 • 比较不同土壤类型或植被类型下 Fe-OC 结合的有机碳来源差异。研究意义:• 搞清楚什么样的有机碳更容易与铁矿物结合,有助于优化土壤管理策略,促进碳固定,提高土壤碳汇功能。03微生物在铁氧化物-有机碳互作中的作用机制研究方向: • 研究不同功能群微生物(铁还原菌、铁氧化菌)在 Fe-OC 动态中的角色。 • 解析微生物胞外多糖(EPS)、胞外电子传递对 Fe-OC 形成和解离的影响。研究意义:• 微生物过程是土壤碳稳定的关键环节,揭示微生物与 Fe-OC 的交互机制,有助于发展基于微生物调控的土壤碳汇增强技术。04土地利用变化和管理措施对 Fe-OC 储量与稳定性的影响研究方向: • 比较不同土地利用类...
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务