028-8525-3068
新闻动态 News
News 公司新闻
根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染...
发布时间: 2025 - 06 - 05
浏览次数:0
作者:
发布时间: 2025 - 01 - 02
点击次数: 0
文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thawing)。作者研究了储存期间微生物存活率(microbial viability)的趋势和影响因素,以及培养期间微生物介导的呼吸作用的变化。(2)检测指标:含水量、总氮、总磷、微生物量碳、微生物量氮、粒径分布、pH、阳离子交换量、16srRNA测序、细胞活性、土壤呼吸。结果(1)土壤储存导致活细胞的存活率呈指数级下降(图1a-b)。储存温度、持续时间和土壤类型对存活率和产量有显著影响。在4℃下储存5、40和210天后,存活率分别为77.0%、71.2%和47.3%。在-20℃下储存后,存活率分别为69.1%、55.6%和38.1%(图1a)。总体而言,与-20℃相比,在4℃下储存时的存活率明显...
作者:
发布时间: 2024 - 12 - 06
点击次数: 0
# 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
作者:
发布时间: 2024 - 11 - 29
点击次数: 0
文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1)根际土壤中微生物残体的浓度大于非根际土壤,这是由于根际沉积中富含C的不稳定基质激发了更高的微生物代谢效率;(2)考虑到根际区植物与微生物对养分的激烈竞争,土壤养分有效性将主要决定微生物残体对根际SOC的贡献幅度,特别是在植物生长和生产力通常受到土壤养分有效性的限制的高寒森林中。研究结果(1)根际和非根际SOC和微生物残体的差异。根际SOC和氨基糖浓度均显著高于非根际土壤(图2)。其中,根际SOC平均浓度比非根际土壤高66.7% (图2a);根际土壤中总氨基糖、胞壁酸和氨基葡萄糖的平均浓度分别比非根际土壤高78.5%、45.9%和59.1%(图2b-d)。图2 根际和非根际土壤有机碳、胞壁酸、...
作者:
发布时间: 2024 - 11 - 21
点击次数: 0
土壤酶活性,是指土壤酶催化物质转化的能力。常以单位时间内单位土壤的催化反应产物量或底物剩余量表示。土壤酶活性既包括已积累于土壤中的酶活性,也包括正在增殖的微生物向土壤释放的酶活性,它主要来源于土壤中的微生物,动物和植物。土壤酶活的分类:已知的酶根据酶促反应的类型可分为六大类。即水解酶、氧化还原酶、转移酶、裂合酶、异构酶和连接酶。1. 水解酶类: 酶促各种化合物中分子键的水解和裂解反应。主要包括蔗糖酶、淀粉酶、纤维素酶、脲酶、蛋白酶、磷酸酶等。2.氧化还原酶类: 指催化两分子间发生氧化还原作用的酶的总称。主要包括脱氢酶、过氧化氢酶、过氧化物酶、硝酸还原酶、亚硝酸还原酶等。3.转移酶类: 指能够催化除氢以外的各种化学官能团从一种底物转移到另一种底物的酶类,包括转氨酶、果聚糖蔗糖酶、转糖苷酶等。4.裂合酶类: 指催化由底物除去某个基团而残留双键的反应、或通过逆反应将某个基团加到双键上去的反应的酶的总称,主要包括谷氨酸脱羧酶、天门冬氨酸脱羧酶等。5.异构酶类: 酶促有机化合物转化成它的异构体的反应。6.连接酶类: 是一种催化两种大型分子以一种新的化学键结合一起的酶。测定方法分析:1.生化培养法作为酶活测定的重要方法之一,其又细分为分光光度法和滴定法。分光光度法:其基本原理是酶与底物混合经培养后产生某种带颜色的生成物,可在某一吸收波长下产生特征性波峰,再用分光光度计测定设定的标准物及生成物的吸光值,由此确定酶活性的含量。滴定法:如果产物之一是自由的酸性物质可用此法。如脂肪酶催化脂肪水解释放出脂肪酸,脂肪酸的含量可以通过滴定进行定量,通过计算反应过程中脂肪酸的增加量就可以计算出脂肪酶的酶活力。2.荧光法荧光法是一种基于荧光信号的酶活测定方法,其原理是通过测量酶促反应中荧光物质的变化来推算酶活性。荧光法具有较高的灵敏度和选择性,适用于低浓度底物或产物的检测。不过,荧光法需要特殊的荧光仪器和荧光标记的底物或产物,通常这些产物需要人工合成,准备起来较复杂,且荧光效率随温度而变化,故在整个测定过程中保持温度恒定十分重要,成本较高且操作相对复杂。荧光法实验操作流程:3.酶联免疫试剂盒检测ELISA试剂盒是一种用于定量或定性检测样品中特异性抗原或抗体的试剂组合。它通常由酶标记抗体、酶底物、终止液、标准品、样品稀释液等组成。通过酶促反应,将抗原-抗体反应的特异性反应转化为可测量的光信号,从而实现对样品中抗原或抗体的定量或定性分析。4.微量法活性检测试剂盒检测微量法和多数生化培养法的测定原理都是朗伯比耳定律: A=kbc,不同的是...
作者:
发布时间: 2024 - 11 - 14
点击次数: 0
草原土壤储存有439 Gt有机碳(SOC),在调节区域乃至全球气候变化进程中起着重要作用。然而,全球气候变化背景下,大气氮沉降的“施肥效应”强烈地影响着土壤碳储存。因此,明确高寒草甸SOC组分对氮、磷富集的响应和潜在机制至关重要。西南民族大学高寒湿地生态保护研究创新团队马文明副研究员课题组依托青藏高原生态保护与畜牧业高科技研究示范基地和四川若尔盖高寒湿地生态系统国家野外科学观测研究站以红原高寒草甸为研究对象进行了长期氮磷添加实验。采取随机区组用尿素(CO(NH2)2)和过磷酸钙(Ca(H2PO4)2·H2O)设计7个施肥梯度,氮肥施尿素(46.65%N),磷肥施过磷酸钙(16%P2O5),施肥梯度分别为(0g尿素+0g过磷酸钙)/m2(CK)、(10g尿素)/m2(N10)、(30g尿素)/m2(N30)、(10g过磷酸钙)/m2(P10)、(30g过磷酸钙)/m2(P30)(5g尿素+5g过磷酸钙)/m2(NP10)、(15g尿素+15g过磷酸钙)/m2(NP30)。研究发现,氮和磷添加导致 SOC含量增加19.95%–36.66%;在相同施肥条件下,SOC含量随着施肥梯度的增加而增加,在N30处理下达到最高;N和P添加促进了脂肪族碳和芳香族碳的富集;与其他处理相比,NP30处理下SOC的稳定性最高,而P10处理下SOC的稳定性最低。表明N和P添加促进了不稳定碳的损失和稳定碳的富集,从而提高了SOC的稳定性,促进了高寒草甸SOC的封存。总体而言,氮磷添加改变了高寒草甸土壤有机碳的理化性质以及SOC的官能团组成,进而促进了SOC积累。因此,在退化的生态系统中添加氮和磷可能是改善土壤碳固存的有效措施。该项研究近期以题为Nitrogen and phosphorus supply controls stability of soil organic carbon in alpine meadow of the Qinghai-Tibetan Plateau发表在生态学领域一区期刊Agriculture Ecosystems & Environment上(IF=6.576)。该研究得到了国家自然科学基金(No. 31600378和U20A2008)、西南民族大学青藏高原研究科技创新团队(2024CXTD10)建设项目、西南民族大学“双一流”建设项目(No. CX2023030)和中央高校优秀学生培养工程项目(2023NYXXS099)等项目资助。Fig. 2. The effects of N and P addition on soil ...
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务