028-8525-3068
新闻动态 News
News 行业新闻

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

日期: 2022-02-15
标签:

一、文章基本信息

原名Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient

译名:土壤微生物群落和酶活性沿海拔梯度的变化规律

作者Chengjie Ren,et al.

期刊:Catena

影响因子:5.198

发表时间:2021.


二、文献阅读内容

1 关键词

海拔梯度;土壤微生物多样性和酶;外生菌根真菌和腐养真菌;根际效应;气候变化。

2 研究主题和背景

(1)背景:土壤系统中微生物群落和酶活性沿海拔梯度的分布规律已引起广泛关注;然而,根际土壤微生物多样性和酶活性的差异及其驱动因素尚不清楚。

(2)主题:本研究覆盖六个海拔水平梯度,范围从海拔1308米到2600米。利用Illumina MiSeq对16S rRNA基因和ITS-1基因进行测序,分析根际和非根际土壤中细菌、真菌总量、外生菌根真菌(EcM)和腐养真菌群落;同时分析了土壤胞外酶活性。

3 科学问题或科学假说

(1)科学问题:沿海拔梯度下根际/非根际微生物群落结构和酶活性分布规律及其驱动因素?

(2)科学假说

由于根际与非根际之间土壤理化性质的差异,如SOC, 是导致根际/非根际土壤微生物多样性和酶活性显著差异的重要因素,但随海拔升高而减小,而海拔梯度下植物特征和气候因素变化对其影响极小。

4 以往研究及研究现状

在一些研究中已经使用了海拔实验来检验气候变化对土壤微生物的影响,这些实验表明,微生物多样性和酶活性表现出不一致的模式,即随海拔变化单调减少,驼背或无。这是因为环境条件会随着海拔的变化而变化,从而为微生物创造了复杂的条件,虽然有一些研究报道了微生物群落的海拔分布,但大多数研究考虑的是全土,很少有研究考虑根际,特别是根际土壤和整体土壤在海拔梯度上的差异不太明确,根际土壤的养分转化率一般高于非根际土壤。

5 材料与方法

A.样地与土壤样品采集与保存:该实验于2018年7月进行采样,6个海拔高度覆盖3种植被类型。1308m、1603m-QVA;1915m、2292m-QW;2406m、2600m-BA,这三种共生树种通常与外生菌根真菌(EcM)有关,外生菌根真菌在这些森林的土壤微生物群落中占主导地位。每个海拔梯度取三个重复。为了进行原位植物群落描述,在每个站点随机选择3个10 × 10 m象限、5个5 × 5 m象限和10个1 × 1 m象限,分别测定乔木、灌木和草本植物的丰富度和Shannon多样性,同时采取根际很非根际土壤。

B. 植物特性及土壤理化性质分析

通过磨细测定树叶和树根中的碳、氮、磷含量;土壤pH;TC、TN、TP;MBC、MBN、MBP;硝态氮、氨态氮;土壤容重:在105°C烘箱烘干24小时后和之前的岩心重量测定,并根据单个岩心体积进行校正。

C. 土壤酶活性分析

测定土壤酶活:BG、NAG+LAP、AP分别为C、N、P获取酶。

D. 土壤DNA提取,PCR扩增,Illumina MiSeq测序

使用FastDNA旋转试剂盒从新鲜土壤中提取DNA (MP Biomedicals,美国克利夫兰)。通过分光光度计(NanoDrop2000, Thermo Scientific,美国威尔明顿,德)。提取的土壤DNA在−80℃保存至PCR扩增和分析。序列使用QIIME进行。

E.数据分析

PLS-PM揭示沿海拔梯度下哪些环境变量对微生物多样性和酶活性的影响更大;采用冗余分析(RDA)方法分析了土壤微生物与气候、植物性质、土壤性质等环境变量的关系;采用单因素方差分析(ANOVA)分析了海拔梯度对气候因子、植物性状、土壤性状、土壤微生物生物量、微生物多样性、优势菌门和酶活性的影响。

6 结果

(1) 土壤特性和植物特性。气候变量(气候因子和植物-土壤性质)沿海拔梯度的变化;沿海拔梯度优势树种的变化由QVA-QW-BA,丰富度和Shannon多样性随海拔升高先增加后降低。叶片和根系养分水平(C、N和P)最高的是在1915m,除了根C,最高在2292m,土壤性质表现出相似的趋势;MBC、MBN、MBP、TN、SOC和NH4+在1915 m处最高。

(2)图1、图2:根际土壤与土壤微生物群落的差异。根际和非根际土壤中微生物多样性随海拔升高呈驼背曲线变化。根际土壤微生物群落多样性差异(除腐养群落多样性外)随海拔升高显著减小。根际和非根际细菌多样性存在显著性差异。

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

(3)根际土壤与非根际土壤酶活性的差异。海拔高度显著影响土壤酶活性。其中,C -获取酶(BG)、N-获取酶(NAG + LAP)和P-获取酶(AP)活性均随海拔升高而显著降低,且根际土壤的活性显著高于非根际土壤。与微生物多样性响应一致,C、N、P获取酶的活性在根际和非根际土壤中的差异随着海拔的增加显著的降低。

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

(4)根际和非根际土壤微生物群落和酶活性差异的影响因素。结果显示微生物多样性分别解释了90.1%、62.4%、82.3%的根际、非根际以及差异的变异方差。此外,除对气候因子的响应外,根土壤微生物多样性(通径系数= 0.786)主要受植物特性的直接影响,而非根际土壤微生物多样性则受植物特性的直接影响。结果表明,不同海拔梯度对根际土壤酶活性变化的贡献率分别为96.3、95.2和91.2%。RDA和Pearson相关性分析表明,根际土壤和非根际土壤中的微生物细菌和真菌类群对环境因子的响应不同。其中,气候因子(MAT和MAP)、BD、pH、TP和NH4+对根际土壤和非根际土壤细菌和真菌类群变异的解释作用更大。

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

根际土壤微生物群落和酶活性沿海拔梯度的变化规律

7 讨论

(1)根际土壤微生物群落多样性随海拔升高而显著变化,根际与非根际土壤微生物群落多样性的差异随海拔升高而显著减小,验证第一个假设。 空间属性、气候因素、植物群落和其他生物和非生物变量可能解释了土壤微生物多样性的动态变化,以及根际效应对微生物多样性的重要性。此外,根际土壤微生物多样性高于非根际土壤,主要是由于植物根系分泌物释放的养分流向周围土壤,较高的温度会加速养分释放。因此,海拔依赖性的土壤温度下降可以导致较低的养分波动。

(2)随着海拔梯度的增加,BG, NAG,LAP和酸性磷酸酶(AP)活性均显著降低。与巴塔哥尼亚南部土壤酶活性对海拔梯度没有显著响应的研究不一致,土壤酶是由微生物响应环境信号而表达并释放到环境中的,这种差异可能是由于不同样带样点,植被类型也不同造成的。也有一些研究表示,海拔依赖性的土壤微生物组成变化导致土壤酶活性的不同响应;此外,土壤酶活性也可能取决于海拔梯度上的复杂条件,如土壤温度、水分和土壤养分有效性等。此外,根际和非根际土壤的酶活在高海拔梯度非常相似,说明高海拔,环境越恶劣,根-土系统中养分获取酶的相似性越高。与以往研究一致,高海拔低土壤温度可以创造相对稳定的生境,导致微生物代谢活性较低,导致根际土壤和整体土壤在海拔梯度上差异减小。

(3)根际和非根际土壤中微生物群落和酶活性的差异与环境条件有关。气候因子对微生物群落的形成起着至关重要的作用,低温和高海拔增加的生理胁迫会限制微生物的生长,最终降低微生物的多样性,

8 总结与思考

(1) 土壤细菌、真菌总量、EcM、腐养真菌群落多样性及土壤酶活性在海拔梯度上均发生显著变化,根际和非根际土壤间的差异随海拔升高而显著减小。

(2) 土壤微生物多样性和酶活性的差异主要取决于气候因素,表明气候是影响根际和非根际土壤微生物多样性和酶活性差异的最重要的生态因子。除了气候因子,土壤性质也影响根际和非根际土壤在海拔梯度上的微生物多样性和酶活,证实土壤养分水平可以解释微生物多样性和酶活性沿海拔梯度的差异。

(3) 综上,研究结果强调了以海拔引起的微生物多样性和酶活的变化为代表的根际效应的重要性,并预测气候变化的潜在结果。

  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务