028-8525-3068
新闻动态 News
News 行业新闻

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

日期: 2022-02-08
标签:

原名:Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands

译名:青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

期刊:Global Change Biology

2020年影响因子: 10.863

在线发表时间:2021.11.02

第一作者:Mei He

通讯作者:Yuanhe Yang

第一单位:中国科学院植物研究所植被与环境变化国家重点实验室

研究背景

微生物坏死碳(C)被认为是持久性土壤碳库的重要贡献者。然而,目前还缺乏对不同土层特别是高山生态系统微生物坏死量C的大规模系统观测。此外,植物碳输入和矿物性质等生物和非生物变量在调节微生物坏死量C方面的相对重要性是否会随土壤深度而改变尚不清楚。


研究方案

沿着青藏高原约2200公里的高寒草地样带进行了大规模采样,共采集了36个地点的表土和底土样品(Figure 1a),并根据氨基糖估算了微生物残体C的含量。为了探索微生物残体C的关键决定因素,检测了各种生物和非生物因素,包括植物碳输入、微生物性质(如微生物生物量C (MBC)、总磷脂脂肪酸(PLFAs))、矿物保护(粘土含量、铁/铝氧化物和交换性钙)和土壤理化性质(如:土壤温度、有机碳与全氮比)。进一步采用方差分解分析(VPA)和结构方程模型(SEM)定量分析了这些因素对土壤微生物残体C空间变化的相对贡献。


主要研究结果

在36个采样点,表层和深层土壤的微生物残体C分别为0.55 ~ 34.78和0.40 ~ 15.19 mg g-1 dry soil,平均值分别为9.57, 1.72和3.29, 0.57 mg g-1 dry soil. 高寒草原、高寒草甸以及整个高寒草地的微生物残体C均随土壤深度的增加而显著降低(Figure 1 c)。与总微生物残体C一致,真菌和细菌残体C在表土中显著高于底土(Figure S1)。而在有机碳归一化条件下,两种草地类型的土壤微生物残体C含量均无显著差异(高寒草原:P = 0.47;高寒草甸:P = 0.40)或整个高寒草甸(P = 0.28,Figure S2)。有趣的是,高寒草地微生物残体C对土壤有机碳的贡献显著低于全球草地 (表土:45.4% vs 58.1%;底土:41.7% vs. 53.7%; Figure S3)。

微生物残体C的主要决定因素与土壤深度有关。在表土中,微生物残体C随植物C输入量、MBC、总PLFAs、真菌PLFAs和细菌PLFAs的增加而显著增加(Figure 2a-e)。与黏土含量、Caexe、Feo+Alo和Fep+Alp也表现出正相关 (Figure 3a-d)。此外,微生物残体C随土壤理化参数的变化而变化,与土壤水分和有机碳/全氮 (Figure 4b-d),但与土壤pH值呈负相关(Figure 4c),与土壤温度没有显著关系 (Figure 4a)。与表土相似,底土微生物残体C与植物C输入量、总PLFAs、细菌PLFAs (Figure 2f, h, j),粘土含量,Caexe, Feo+Alo, Fep+Alp (Figure 3e-h) 呈正相关。与土壤湿度(Figure 4f),与土壤pH值(Figure 4g),但不受土壤温度(Figure 4e)和SOC/TN (Figure 4h)的调控。

VPA和SEM结果共同表明,微生物残体C的主导驱动因素在不同土壤深度之间存在差异 (Figure 5-7)。对于表层土壤,VPA结果表明植物C输入和矿物保护在调节整个研究区微生物残体C的积累中发挥了重要作用。植物C的输入和矿物保护完全解释了92.6%的微生物残体C的空间变异 (Figure 5a)。SEM分析还表明,微生物残体C主要受植物C输入和矿物保护的直接影响 (Figure 6a),标准化直接效应分别为0.48和0.55 (Figure 7a)。此外,植物C的输入通过调节土壤pH和矿物保护间接影响微生物残体C (Figure 7a)。VPA结果表明,与表层土壤相比,在深层土壤中,矿物保护对微生物残体C变化的解释比例(30.1%)远高于植物C输入(4.1%) ( Figure 5b)。SEM分析证实了矿物保护在调节土壤微生物残体C中的重要作用 (Figure 6b)。生物和非生物因素共同解释了62%的微生物残体C的空间变异 (Figure 6b)。其中,矿物保护对微生物残体C的直接影响最大,而植物C的输入对最终的SEM没有直接影响 (Figure 7b)。

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

Figure 1 Geographic distributions of sampling sites (a) and frequency distributions of microbial necromass C in the topsoil (b) and subsoil (d) across Tibetan alpine grasslands, and comparison of microbial necromass C between the two soil depths in alpine meadow, alpine steppe and the whole alpine grassland (c). The vegetation map is derived from China's Vegetation Atlas (Editorial Committee for Vegetation Map of China, 2001). The horizontal lines and circles inside each box represent the medians and the mean values, respectively. The ends of the boxes show the 25th and the 75th quartiles, and the whiskers indicate the standard deviation (SD), respectively.

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

Figure 2 Relationships between microbial necromass C and biotic factors including plant C input (a, f), MBC (b, g), total PLFAs (c, h), fungal PLFAs (d, i) and bacterial PLFAs (e, j). Blue and yellow symbols represent data points in the topsoil and subsoil, respectively. The solid cycles and triangles represent data points from alpine steppe (n = 22) and alpine meadow (n = 14), respectively. The solid lines were fitted by ordinary least-squares regressions, and the shadow areas corresponded to 95% confidence intervals. * and ** represent significant level at P < 0.05 and P < 0.01, respectively. MBC: microbial biomass carbon. PLFAs: phospholipid fatty acids.

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

Figure 3 Relationships between microbial necromass C and mineral protection including clay content (a, e), Caexe (b, f), Feo+Alo (c, g) and Fep+Alp (d, h), respectively. Blue and yellow symbols represent data points in the topsoil and subsoil, respectively. The solid cycles and triangles represent data points from alpine steppe (n = 22) and alpine meadow (n = 14), respectively. The solid lines were fitted by ordinary least-squares regressions, and the shadow areas corresponded to 95% confidence intervals. * and ** represent significant level at P < 0.05 and P < 0.01, respectively. Caexe: exchangeable Ca2+; Feo+Alo: sum of pyrophosphate-extractable Fe/Al oxides; Fep+Alp: sum of oxalate-extractable Fe/Al oxides.

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

Figure 4 Relationships between microbial necromass C and soil physicochemical properties including soil temperature (a, e), soil moisture (b, f), soil pH (c, g) and SOC/TN (d, h), respectively. Blue and yellow symbols represent data points in the topsoil and subsoil, respectively. The solid cycles and triangles represent data points from alpine steppe (n = 22) and alpine meadow (n = 14), respectively. The solid lines were fitted by ordinary least-squares regressions, and the shadow areas correspond to 95% confidence intervals. * and ** represent significant level at P < 0.05 and P < 0.01, respectively. SOC: soil organic carbon; TN: total nitrogen.

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

Figure 5 Results of variation partitioning analyses illustrating the relative contribution of plant C input and mineral protection to microbial necromass C in the (a) topsoil and (b) subsoil. The retained mineral variables by stepwise regression model were Caexe and Feo+Alo in both the topsoil and subsoil. X1 and X2 indicate the pure effect of each type of variable, and X3 suggests the joint effect of two types of variables. Caexe: exchangeable Ca2+; Feo+Alo: sum of pyrophosphate-extractable Fe/Al oxides; Fep+Alp: sum of oxalate-extractable Fe/Al oxides.

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

Figure 6 Structural equation models (SEM) revealing the direct and indirect effects of biotic and abiotic factors on microbial necromass C in topsoil (a) and subsoil (b). Black and red solid arrows indicate positive and negative associations, respectively. Dotted lines represent pathways that are not significant. Numbers adjoining the arrows indicate significant standardized path coefficients. The arrow width is proportional to the strength of the association. The multiple-layer rectangles indicate the first component from the PCA of mineral and microbial properties, and the vertical arrows within it represent the positive relationships between adjacent variables and the corresponding PC1. SOC: soil organic carbon; TN: total nitrogen; PLFAs: phospholipid fatty acids; MBC: microbial biomass carbon. Caexe: exchangeable Ca2+; Feo+Alo: sum of pyrophosphate-extractable Fe/Al oxides; Fep+Alp: sum of oxalate-extractable Fe/Al oxides; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

文献解读 | 青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度

Figure 7 Standardized effects of each variables from the structural eaquation modelling (SEM) analysis. (a) and (b) represent standardized direct effects of plant C input and mineral protection in the top and subsoil, respectively; (c) and (d) correspond to standardized indirect effects of soil moisture, soil pH and and plant C input in the topsoil and subsoil, respectively. The values adjacent to the column represent the standardized coefficients in SEM.


结论

基于大规模调查和室内分析相结合的方法,青藏高原高寒草地表层和深层土壤微生物残体 C对有机碳的贡献率均高达40%。微生物残体C的主导因素也与土壤深度有关: 植物C输入的作用随着土壤深度的增加而减弱,而矿物保护的作用则随着土壤深度的增加而增强。因此,本研究强调土壤深度之间微生物残体碳的差异控制应纳入地球系统模型,以减少土壤碳动态预测中的不确定性。本研究还表明,矿物保护似乎是控制深层土壤微生物残体C长期稳定的关键机制,这可能会减缓气候变化下潜在的正C-气候反馈效应。

  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务