028-8525-3068
新闻动态 News
News 行业新闻

青藏高原多年冻土氮素状况及其决定因素

日期: 2021-08-20
标签:

标题:Permafrost nitrogen status and its determinants on the Tibetan Plateau

论文id:https://doi.org/10.1111/gcb.15205

原名:Permafrost nitrogen status and its determinants on the Tibetan Plateau

译名:青藏高原多年冻土氮素状况及其决定因素

期刊:Global Change Biology

IF:10.863(2020)

发表时间:2020年6月7日

第一作者: Chao Mao

通讯作者:杨元和

主要单位:中国科学院大学,中国科学院植物研究所

摘要:

It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large-scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil NH4+ content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.


尽管已有研究表明,多年冻土融化可以促进冻土氮素释放,改变微生物氮转化速率,从而改变土壤氮素有效性,最后调节生态系统功能。然而,目前对这一问题的认识仅限于北极永久冻土区的有限观测,没有对其他永久冻土区进行任何系统的测量。本研究基于1000 km样带的大规模野外调查和15N库稀释法的室内培养试验,对青藏高山多年冻土区冻土的氮素状况进行了综合评估,包括速效氮含量及其转化速率。结果表明,青藏高原多年冻土层的速效氮含量和净氮矿化速率均低于活跃层。此外,多年冻土层的氮素矿化、微生物固定和硝化速率均低于活跃层。我们的研究结果还表明,主导冻土和活跃层总氮矿化和微生物固定化速率的驱动因素不同,冻土层的速率主要取决于冻土微生物特性,而活跃层的速率主要取决于其土壤水分。相反,土壤总硝化速率始终受到冻融和活跃层土壤NH4+含量的调节。总体而言,本研究观察到的多年冻土N库和转化率模式和驱动因素为研究多年冻土融化后潜在的N释放提供了新的视角,并为地球系统模型更好地预测气候变暖下冻土生物地化循环提供了重要思路。


关键词:

climate warming, frozen nitrogen, nitrogen availability, nitrogen cycle, nitrogen transformation rates, permafrost thaw

气候变暖,冻土氮,氮素有效性,氮素循环,氮素转化率,冻土融化


前言:

气候变暖导致了大范围的永冻土融化,这可能引发相当数量的永冻土氮(N)释放,并进一步引发两个生态后果。首先,土壤氮有效性的增加可以促进植物对氮的吸收,提高生态系统的产量。其次土壤有效氮含量升高容易通过硝化和反硝化过程以硝酸盐淋失以及氮氧化物排放的形式损失。因此,更好地了解多年冻土融化过程中土壤氮素的释放及其驱动因素,对于预测这些深层土壤氮去向及其对多年冻土影响地区生态系统功能的影响具有重要意义。而目前的研究主要集中在两个关键参数上,即冻融冻土中速效氮含量和土壤氮素转化速率,这些研究表明,永久冻土融化可能导致释放大量有效氮。

尽管人们对多年冻土N释放的关注越来越多,但我们的认识仍然受到以下两个方面的限制。首先,由于缺乏区域尺度的系统观测,目前还不清楚N转化速率的主导驱动因素是否在两个土层之间有所不同。第二,以前的研究主要局限于北极多年冻土区,对其他永久冻土区的研究很少,如占北半球冻土面积75%的青藏高原。


研究内容:

本研究于2016年在青藏高原进行了大规模的野外采样活动,调查了青藏高原多年冻土区的24个样点。在此基础上,测定了多年冻土和活动层土壤有效氮的含量,包括无机氮(NH4+和NO3−)和有机氮(DON)。还测定了土壤净氮和总氮的转化率,以及两个土层中相关的生物和非生物驱动因素。通过进行这些测量,我们旨在解决以下三个问题:(A)永冻层的有效氮含量是否高于活动层?(B)融化的多年冻土是否具有比活跃层更高的净氮和总氮转化速率?(C)土壤氮素转化速率的主导驱动因素在多年冻土层和活跃层之间是否存在差异?


主要结果:

01

土壤有效氮含量和氮转化率的垂直格局


土壤速效氮含量在冻土层和活跃层之间存在显著差异(图1),土壤DIN和DON含量较低,分别约占活动层的59.7%和14.4%。土壤DIN在多年冻土层和活动层中均以为NH4+主,分别约占97.6%和94.7%。同样,冻土层和活跃层之间的土壤氮转化速率也存在显著差异。冻土层的总氮矿化速率、微生物固定化速率和硝化速率均低于活跃层(图2),比例分别为15.6%、10.7%和9.2%。与总速率相似,冻土中氮矿化和硝化的净速率也低于活动层(图3)。


青藏高原多年冻土氮素状况及其决定因素

图1 冻土样带24个采样点土壤NH4+-N(a)、NO3--N(b)、溶解无机N(DIN,c)和溶解有机N(DON,d)含量差异的空间变化。

青藏高原多年冻土氮素状况及其决定因素

图2 冻土样带的24个采样点冻土层和活动层土壤之间的总氮矿化率(GNM,a)、微生物固持速率(MIM,b)和总硝化速率(GN,c)差异的空间变化。

青藏高原多年冻土氮素状况及其决定因素

图3 冻土样带24个采样点冻土层与活动层土壤净氮矿化速率(NNM,a)和净硝化速率(NN,b)差异的空间变化。


02

大尺度上土壤氮素转化速率的驱动因素

土壤氮素转化速率(净氮转化速率/总氮转化速率)与潜在驱动因子(生物因子和非生物因子)之间存在显著关系。同样,在冻土中,总氮转化速率与上述大多数变量之间也存在显著的相关性,但总氮转化速率与沙粒含量以及总硝化速率与AOB丰度之间没有显著的相关性(图4)。活跃层和冻土层土壤氮素转化速率受不同因素的调控。具体地说,活跃层的氮矿化和微生物固定的总速率主要受土壤水分控制(图5a,b),而冻土中的氮矿化和微生物固定速率主要受微生物特性的调节(PLFA总量和真菌/细菌比;图5d,e)。


图4 活性层和冻土层土壤中生物和非生物变量解释的总氮矿化(a)、微生物固定化(b)和总硝化(c)速率的比例。


图5 活动层和冻土层土壤中总氮矿化(a,d)、微生物固定(b,e)和总硝化(c,f)速率的变异分割分析结果。



结论

本研究首次尝试揭示了青藏高原多年冻土中有效氮库和转化速率的大尺度模式和驱动因素(图6)。本研究观察到多年冻土中的DIN(NH4+,NO3−)和DON含量以及净氮/总氮的转化率始终低于活动层。研究还发现,多年冻土和活跃层的氮素矿化和微生物固定的总速率受不同因素的影响,其中微生物特性(微生物生物量和真菌:细菌比)在多年冻土中占主导地位,而土壤水分在活跃层中起着最重要的作用。而总硝化速率主要受冻土和活跃层土壤NH4+含量的影响。

青藏高原多年冻土氮素状况及其决定因素



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
  • 点击次数: 0
    2025 - 04 - 29
    01按照土壤碳的形态分类(1)有机碳 • 总有机碳:土壤中所有来源的有机碳总量。 • 可溶性有机碳:可溶于水的有机碳,影响土壤碳循环的活性部分。 • 颗粒态有机碳:粒径通常在53 μm–2 mm之间的有机碳,较易分解。 • 矿物结合有机碳:与矿物颗粒结合的有机碳,较为稳定。 • 轻组有机碳:通过浮选法分离出的轻组有机碳,主要由未完全分解的有机质组成。 • 重组有机碳:通过浮选法分离出的重组有机碳,主要由金属氧化物结合的有机质组成。 • 微生物生物量碳:土壤微生物体内的碳,是活性有机碳的一部分。 • 易氧化碳:能被高锰酸钾氧化的有机碳,表征活性有机碳库。(2)无机碳 • 总无机碳:土壤中的所有无机碳总量。 • 碳酸盐碳:主要以方解石(CaCO₃)、白云石(CaMg(CO₃)₂)等矿物形式存在。 • 碳酸氢盐碳:土壤溶液中的可溶性无机碳,易随水流失。02按碳库的稳定性分类 • 活性有机碳库:周转快,易受环境变化影响,包括DOC、MBC、POC等。 • 慢性有机碳库:周转较慢,部分矿物结合的有机碳属于此类。 • 惰性有机碳库:高度稳定,如腐殖质碳、黑碳。03按土壤深度分布分类 • 表层土壤碳( 0–30 cm):主要受植被、微生物和人为活动影响。 • 深层土壤碳(30 cm):稳定性较高,受矿物结合和碳迁移过程影响。04按来源分类 • 植被来源碳:枯落物、根系分泌物、植物残体分解产生的碳。 • 微生物来源碳:微生物代谢及死亡后残留的碳。 • 外源输入碳:施肥、污染物沉降等外部输入的碳。这些指标可以用于研究土壤碳循环、碳固存、农业土壤管理等问题。在实际研究中,通常结合稳定同位素分析、核磁共振(N...
  • 点击次数: 0
    2025 - 04 - 09
    铁氧化物结合态有机碳在土壤碳汇和碳稳定方面有重要意义,尤其在全球气候变化和土壤碳库管理背景下,越来越受关注。但仍然存在不少研究空白。今天我们通过ChatGPT和DeepSeek两大AI平台分析一下在该领域尚未被充分研究的热点问题和潜在研究方向~一、ChatGPT分析结果01铁氧化物结合态有机碳的稳定性机制与动态过程研究方向: • 原位监测 Fe-OC 在周期性湿润/干燥条件下的稳定性。 • 利用同位素示踪和光谱技术揭示铁矿物转化(非晶态铁 → 晶态铁)对有机碳稳定的影响。研究意义:• 理解铁氧化物在不同氧化还原条件下如何稳定或释放碳,有助于预测湿地、稻田等环境下土壤碳库的动态变化,进而对碳循环建模和气候变化预测有指导意义。02铁-有机复合物中有机碳的分子特征与来源研究方向: • 利用高分辨率质谱(FTICR-MS)、X射线吸收精细结构光谱(XAFS) 等先进技术分析 Fe-OC 复合物中的有机分子组成。 • 比较不同土壤类型或植被类型下 Fe-OC 结合的有机碳来源差异。研究意义:• 搞清楚什么样的有机碳更容易与铁矿物结合,有助于优化土壤管理策略,促进碳固定,提高土壤碳汇功能。03微生物在铁氧化物-有机碳互作中的作用机制研究方向: • 研究不同功能群微生物(铁还原菌、铁氧化菌)在 Fe-OC 动态中的角色。 • 解析微生物胞外多糖(EPS)、胞外电子传递对 Fe-OC 形成和解离的影响。研究意义:• 微生物过程是土壤碳稳定的关键环节,揭示微生物与 Fe-OC 的交互机制,有助于发展基于微生物调控的土壤碳汇增强技术。04土地利用变化和管理措施对 Fe-OC 储量与稳定性的影响研究方向: • 比较不同土地利用类...
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务