028-8525-3068
新闻动态 News
News 公司动态
文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C...
发布时间: 2024 - 07 - 24
浏览次数:0
作者: 植物所
发布时间: 2020 - 03 - 17
点击次数: 0
高等植物的叶绿体是十亿年前蓝藻被真核生物吞噬后经内共生演化而来,共有3000个左右的蛋白,其中95%以上由核基因编码。核基因编码的叶绿体蛋白在细胞质中合成后,通过叶绿体内、外被膜和类囊体膜转运通道运输到叶绿体内的不同区域使叶绿体行使光合作用功能。因此,研究叶绿体蛋白跨膜运输方式对于探讨叶绿体的生物发生、光合器官的建成和功能以及真核生物的起源和进化等都具有重要意义。此前研究主要关注的是叶绿体被膜转运通道以及类囊体膜转运通道。然而,叶绿体蛋白在跨过叶绿体被膜之后,是如何穿过拥挤的基质空间,并精确地靶定到特异性的类囊体膜受体复合物的分子机制仍不清楚。中国科学院植物研究所张立新团队以模式植物拟南芥为材料,发现了位于叶绿体基质的关键性蛋白转运分选因子STT1与STT2,并揭示了其介导的分选、靶定机制。STT1与STT2形成寡聚体复合物特异d识别底物信号肽从而结合、分选底物,之后STT复合物与类囊体膜受体复合物Hcf106结合完成其靶定运输过程。阻碍STT-Hcf106结合会阻断Tat底物的运输,影响植物光合作用从而导致植物致死的表型。相分离作为近年来细胞生物学的一个热点受到了广泛的关注,而相分离对植物生理活动的调控依然不清楚。该研究通过大量的体内体外实验进一步揭示了相分离参与调控底物的分选、靶定机制:底物结合激活STT复合物进一步的组装相分离形成浓缩的液滴。STT-底物相分离液滴协助底物穿过叶绿体基质从而靶定到类囊体膜。而Hcf106能够抑制STT的相分离从而释放底物,完成底物的正确运输与装配。该研究首次发现了相分离(形成液滴)调控叶绿体蛋白的运输,从而调控叶绿体的生物发生。同时该研究通过分析细菌、酵母、高等植物与动物的分选因子,发现相分离可能是驱动蛋白分选运输的普遍机制。这是国际上首次提出相分离驱动叶绿体内蛋白分选的新机制,强调了相分离调控蛋白运输是在所有物种都存在的普遍机制,同时也开拓了相分离与蛋白运输的研究领域,为研究细胞是如何精确调控其各种生理活动拓展了思路。该研究成果于3月12日发表在国际学术期刊《细胞》(Cell)。
作者:
发布时间: 2020 - 01 - 13
点击次数: 0
11月29日,PLoS Genetics 在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所薛红卫研究组题为SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling 的研究论文。该研究发现水稻中的一个含有SPOC结构域的蛋白Leaf inclination3 (LC3)通过结合转录因子LIP1共同调控生长素信号,从而调控水稻叶倾角。水稻是重要的单子叶模式植物,也是我国乃至世界上最主要的粮食作物之一。株型对作物的生产和产量有着重要关系,而叶倾角又是水稻株型的关键组分之一。研究表明,适当的叶倾角有利于提高水稻光合效率,通过合理密植,能够有效提高产量。尽管早已发现植物激素生长素影响叶倾角大小,且其代谢调控因子GH3和信号通路的关键组分IAA、ARF等被报道参与了叶倾角的调控,但对相关上游调控因子及机制仍了解较少,有待进一步阐明。研究组在前期工作中发现水稻缺失突变体LC3表现出叶倾角增大的表型。进一步的遗传学、细胞生物学等分析表明LC3蛋白作为一个转录抑制子通过与LC3互作的转录因子LIP1协同抑制下游基因OsIAA12和OsGH3.2表达,通过抑制生长素信号,最终调控水稻叶倾角。此外,OsIAA2通过与OsARF17互作抑制生长素信号,揭示了OsIAA2-OsARF17在叶倾角发育调控中的特定功能。该研究有助于对生长素信号调控网络的理解。也对研究植物中具有SPOC结构域的蛋白的功能提供了借鉴。值得一提的是,这是首次发现的仅含有SPOC结构域而不含RRM SPEN家族的成员。博士生陈素卉和周莉娟为论文第一作者。相关工作得到国家自然科学基金项目(91535201)以及“万人计划”的资助。(来源:中国科学院植物生理生态研究所) SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling Abstract  Leaf angle is an important agronomic trait and influences crop architecture and yield. Studies have demonstr...
作者:
发布时间: 2018 - 11 - 22
点击次数: 0
土壤有机碳时空变异模拟研究取得进展        受限于土壤样点的时间维属性,一般的土壤制图只能获得固定时间的“静态”土壤图,描述目前或过去状态的格局。但是,土壤在不同土地利用条件下未来如何演变,在不同的气候变化情景下呈现怎样的时空变化特征?这是土壤时空变化预测的重要主题。中国科学院南京土壤研究所张甘霖课题组副研究员宋效东以土地利用变化频繁的太湖周边地区为例,深入研究了土壤有机碳含量空间变异的主导因素,提出了基于土壤发生理论的启发式元胞自动机模型,模拟土壤有机碳含量在土地利用与气候变化条件下未来60年内的时空变异特征。有别于常规的元胞自动机模型,该方法不仅能够有效集成影响土壤有机碳含量的静态/动态环境变量,还能够根据土地利用类型(旱地/水田)动态地度量有机碳富集对临近区域有机碳水平迁移的影响范围。鉴于土地利用类型的重要性,根据历史土地利用图层制作了研究区未来60年的土地利用变化图。模拟结果表明:研究区土壤表层有机碳含量在未来60年内随着气温、降雨的升高与城镇化进程的推进将呈现持续上升的趋势。研究提出的预测模型为土壤属性的时空变异模拟提供了新的解决方案与思路。该研究成果发表在Agriculture, Ecosystems and Environment上。研究得到国家重点研发计划(2017YFA0603002)、科技基础性工作专项(2008FY110600)、国家自然科学基金(41571130051和41771251)的资助。(来源:中国科学院南京土壤研究所) Heuristic cellular automaton model for simulating soil organic carbon under land use and climate change: A case study in eastern China Abstract  The concentration of soil organic carbon (SOC) is one of the most important soil properties, and its spatio-temporal variability greatly affects the global climate and agroecology. To investigate the effects of land use and climate change on SOC, a heuristic cellular automat...
作者:
发布时间: 2018 - 11 - 19
点击次数: 0
研究发现植物草酸代谢途径关键酶影响玉米营养品质            9月10日,The Plant Cell 在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所巫永睿研究组题为Maize Oxalyl-CoA Decarboxylase1 Degrades Oxalate and Affects the Seed Metabolome and Nutritional Quality 的研究论文。该研究克隆和功能解析了玉米草酸降解途径中的关键酶——草酰辅酶A脱羧酶,揭示了草酸代谢参与籽粒储藏物质积累和营养品质形成的分子机理。草酸是最简单的二元酸,在植物体内的含量非常高。草酸在调控金属胁迫、离子平衡和昆虫防御等方面起积极作用。然而,过量草酸不仅会影响植物自身发育,也会影响包括钙元素在内的多种矿物金属矿物元素的利用;人体从食物中摄入草酸过多会和钙形成草酸钙,诱发形成肾结石。有报道显示,植物体内存在草酸合成和降解途径,其中一条降解途径由四种酶共同作用,分别为草酰辅酶A合成酶、草酰辅酶A脱羧酶、甲酰辅酶A水解酶和甲酸脱氢酶。草酰辅酶A合成酶可以催化草酸形成草酰辅酶A,接着草酰辅酶A在脱羧酶的作用下形成甲酰辅酶A。草酰辅酶A合成酶在多种植物中均被发现,然而却未有草酰辅酶A脱羧酶的报道,在农作物玉米中,草酸的降解代谢途径还未知,草酸与玉米籽粒发育、营养物质存储和品质调控的关系也不清楚。在此项研究中,巫永睿研究组克隆了玉米草酰辅酶A脱羧酶(Oxalyl-CoA Decarboxylase1,OCD1)基因,该基因突变以后籽粒胚乳呈现出粉质的表型,同时籽粒的储存物质合成和粒重也发生下降。由于没有商业化的草酰辅酶A脱羧酶底物草酰辅酶A,研究人员尝试了多种方法,合成了较高纯度的草酰辅酶A。体外和体内的酶活实验证实草酰辅酶A脱羧酶可以降解草酰辅酶A产生甲酰辅酶A和二氧化碳。同时,研究人员还发现早先克隆的玉米经典高赖氨酸突变体基因opaque7(o7)编码草酰辅酶A合成酶,并证明O7可以催化草酸形成草酰辅酶A。另外,靶向和非靶向代谢组学分析发现,玉米草酰辅酶A基因突变后籽粒胚乳的能量代谢、糖类、氨基酸以及激素含量均受到显着影响。该项研究阐明了玉米草酸代谢的前两步反应,并揭示了草酸降解途径与籽粒胚乳发育、代谢和营养品质的关系,为将来遗传改良草酸含量较高的蔬菜(如菠菜)等提供了候选基因和分子机制。该工作主要由巫永睿研究组副研究员杨俊和博士生付苗苗合作完成。博士生冀晨、...
作者:
发布时间: 2018 - 11 - 17
点击次数: 8
研究揭示干旱对植物群落的调控机制近日,中科院沈阳生态所生态计量化学团队以植物群落养分计量为核心,基于草地样带调查和控制实验的多源数据开展定量评估,阐释了植物对长期和短期水分胁迫的响应机制。相关成果发表于《生态学》(Ecology)。在全球气候变化背景下,内蒙古草原干旱强度和频度呈多发趋势。水分是该生态系统植物生存和繁衍的主要驱动因子,干旱事件将对草原生态系统结构和功能产生深远影响。氮和磷是影响陆地生态系统植物生存、生长和繁殖的主要因子。因此,该团队以群落养分计量为全新理念和视角,探究水分胁迫对生态系统结构和功能影响的内在机制和过程,厘清种内和种间的竞争作用关系对群落结构和动态的影响,旨在为理解草地退化机制、加快退化草地恢复提供参考。研究结果显示,长期水分胁迫下,植物通过内稳态机制提高养分浓度,增强群落的抵抗能力,物种周转是该过程的主要影响因素,但在短期干旱条件下,群落养分对水分胁迫的响应更复杂。整体而言,群落氮浓度上升、磷浓度下降时,种内竞争和物种周转共同影响该生态过程。此外,不同区域群落养分响应程度具有明显差异。极度干旱地区,植物群落养分抵御水分胁迫的能力最强,响应最迟缓。该团队表示,未来研究应建立大型联网干旱实验平台,紧密结合控制实验和自然梯度实验,提高实验结果的准确性和有效性,为建立草地生态系统自然评估体系提供重要理论依据。(来源:中国科学报唐凤) Differential responses of canopy nutrients to experimental drought along a natural aridity gradient Abstract  The allocation and stoichiometry of plant nutrients in leaves reflect fundamental ecosystem processes, biotic interactions, and environmental drivers such as water availability. Climate change will lead to increases in drought severity and frequency, but how canopy nutrients will respond to drought, and how these responses may vary with community composition along aridity gradient...
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务