028-8525-3068
新闻动态 News
News 行业新闻
原名:Root exudation patterns of Chinese fir after thinning relating to root characteristics and soil conditions译名:杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关期刊:Forest Ecology and ManagementIF:4.384发表时间:2023.4第一作者:Jiahao Zhao摘要背景:根系分泌物对森林生态系统地下碳分配和养分循环至关重要。在亚热带地区,关于森林管理活动(如间伐)对成熟森林根系分泌速率的影响鲜有研究。方法:本实验以29年林龄的杉木人工林为研究对象,探究三种不同间伐强度条件下,即对照组(不间伐),轻度间伐(LIT,砍伐的30%树木个体)和重度间伐(HIT,砍伐的70%树木个体),根系分泌速率(单位质量、长度和面积)的变化模式。结果:研究表明,根系分泌物速率在间伐后增加,并表现出明显的季节动态:即夏季较高而冬季最低。分泌物速率与微生物量碳和微生物量氮呈正相关。此外,根系分泌物速率与根尖数量和根系活力呈正相关。随着根直径的增加和比根面积的降低,根系释放更多分泌物,表明杉木的采取资源保守型策略的根系更倾向于选择促进分泌物的释放而不是通过优化形态特征来获取养分。此外,间伐总体上降低了杉木人工林的土壤总碳含量。其中,重度间伐条件下土壤总碳含量高于轻...
发布时间: 2023 - 06 - 21
浏览次数:0
作者:
发布时间: 2021 - 08 - 20
点击次数: 0
标题:Permafrost nitrogen status and its determinants on the Tibetan Plateau论文id:https://doi.org/10.1111/gcb.15205原名:Permafrost nitrogen status and its determinants on the Tibetan Plateau译名:青藏高原多年冻土氮素状况及其决定因素期刊:Global Change BiologyIF:10.863(2020)发表时间:2020年6月7日第一作者: Chao Mao通讯作者:杨元和主要单位:中国科学院大学,中国科学院植物研究所摘要:It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large-scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibet...
作者:
发布时间: 2021 - 08 - 20
点击次数: 0
标题:Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems 论文id:10.1038/s41467-020-14492-w原名:Soil carbon persistence governed by plant input and mineral protection at regional and global scales译名:自然陆地生态系统地上植物生产力普遍受到磷限制期刊:Nature CommunicationsIF:12.212发表时间:2020.01.30第一作者:侯恩庆通讯作者:侯恩庆,温达志主要单位:中国科学院华南植物源   摘要:热带地区地上植物生产普遍被认为受到P限制,而其他地区P限制则很少发生。本研究发现磷限制可能是更加广泛的存在及其强度可能比以往预测的更强。Meta分析结果显示在652个施磷野外试验中,近半数研究(46.2%)表明P显著地限制了植物地上部分生产力。在全球范围内,P添加使陆地生态系统地上植物产量增加了34.9%,比之前预测的增加了7.0 ~ 15.9%。相比之下,在农田中,添加P仅使地上植物产量增加了13.9%,这可能是由于历史施肥所致。不同气候带和地区对磷的限制程度也不同,并受气候、生态系统特性和施肥制度的影响。除证实热带地区普遍存在P限制外,我们的研究还表明其他地区也通常存在磷限制,表明了以往的研究低估了改变磷供应对陆地生态系统地上植物生产的重要性。研究背景:陆地地上植物生产力受到养分限制已被广泛承认。在陆地生态系统中,氮被认为是最重要的限制养分,而P尽管也是重要的限制养分,但其主要发生在风化作用强烈的热带低海拔地区。然而目前更多的研究发现P限制可以发生在苔原地区、温带风化作用强烈地区,这些发现对上述观点提出了挑战。目前为止,对于P在怎样的条件下限制陆地地上植物生产的认识人不清楚。因此,在耦合模型相互比较项目(CMIP5)第五阶段的数十个模型中,没有一个代表陆地磷生物地球化学,这导致了21世纪陆地碳汇强度的估算存在很大的不确定性。本文报道了陆地生态系统地上植物产量的分布、大小和驱动因素。为此,我们使用了一个收录了从1955年至2017年发表的285篇论文汇编而成的652个P添加原位实验数据的全球数据库。该数据库涵盖了所有陆地生态系统的主要类型,包括自然陆地生态系统(436个森林、草原、苔原或湿地实...
作者:
发布时间: 2021 - 08 - 20
点击次数: 0
论文ID:英文名:Organo–organic and organo–mineral interfaces in soil at the nanometer scale译名:纳米尺度下土壤有机-有机和有机-矿物界面期刊:Nature communicationsIF: 14.919发表时间:2020.11.30第一作者:Angela R. Possinger通讯作者:Johannes Lehmann主要单位: 康奈尔大学摘要:土壤碳(C)库的能力大小是由有机质和矿物相之间的相互作用介导的。然而,以往研究提出的有机质在团聚体有机矿物微结构内的层状积累尚未得到必要的纳米尺度空间分辨率的直接可视化证据。与以往研究报道的C官能团有序梯度不同,本研究识别了无序的微米大小的有机相。利用低温电子显微镜和电子能量损失光谱(EELS),我们比较了有机-有机界面和有机-矿物界面的差别。在有机界面上检测到个位纳米尺度的C形成层,显示烷基C和氮(N)富集(分别为4和7%)。在有机-矿物界面,N和氧化C的富集率分别为88%(72 ~92%)和33%(16 ~53%),显示出与有机-有机界面不同的稳定过程。然而,两种界面类型的N富集表明,富N残基促进更高的SOC吸存。研究背景:土壤有机碳(SOC)在全球碳循环中是一个关键的储层,这强调了理解土壤有机质(SOM)持久性的过程的重要性,从全球(如气候)到非常精细的尺度(如有机矿物表面相互作用)。提高对土壤有机质持久性驱动因素认识,包括土壤有机质保护机制,有助于更好地预测全球环境变化下土壤碳库的变化。SOM和矿物相的相互作用导致较低的微生物可达性和可分解性,这被认为是SOM稳定的主要过程。在土壤微团聚体和孔隙结构尺度上,土壤有机质、土壤物理结构和微生物分布的空间和化学异质性得到了较好的研究(图1a)。与微团聚尺度的异质性相比,微米级有机矿物组合的SOM成像和光谱显示SOM具有不同的组分构成,相对均匀、有序的层,且在更小的微米空间尺度上,OM组成与矿物表面的距离有明显的关系(图1b)。以前使用的成像和光谱技术的分辨率(30~50 nm)可能过于粗糙,无法分辨或描述嵌入有机矿物组合中的OM组分之间的界面(图1b)。在相关纳米尺度上,自然土壤样品有机-有机和有机-矿物界面化学组成还没有被直接可视化或描述。SOM与半结晶活性铁(Fe)和铝(Al)矿物表面之间的关联被认为有助于在广泛变化的土壤类型中长期保持和积累SOM。铁铝矿物有机复合体的形成与活性铁铝与氧化官能团和含氮生物分子的优先反应有关。然而,考虑到OM分布的亚微米空间尺度及其化...
作者:
发布时间: 2021 - 08 - 20
点击次数: 0
原名:Absorptive and transport roots differ in terms of their impacts on rhizosphere soil carbon storage and stability in alpine forests译名:高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性期刊:Soil Biology and BiochemistryIF: 7.609发表时间:2021.08.10第一作者:汪其同通讯作者:尹华军主要单位:中国科学院成都生物研究所摘要:根据木本植物细根形态、生理和功能特征的内在差异,可将其分为吸收根和运输根两个功能模块。不同功能模块的根系对土壤生物地球化学过程的潜在生态效应已被广泛认识。然而,由这两个根系功能模块驱动的根际土壤碳储量的大小以及碳稳定机制尚不清楚。在本研究中,我们量化了云杉人工林矿质层(0-15cm)吸收根和运输根根际土壤有机碳含量和组分,进一步通过数值模型估算了两个根系功能模块不同根际范围土壤C储量。同时,通过分析根际土壤有机碳化学特征和金属-有机复合体特征,区分两个根系功能模块对根际土壤有机碳稳定性的差异化影响。结果表明,吸收根根际土壤有机碳含量比运输根根际高15.7%,这主要是由于吸收根根际土壤有机碳的稳定性(化学抗性和金属-有机键)更强。数值模型分析表明,吸收根根际有机碳库(0.27 ~ 2.7 kg C/m2)是运输根根际(0.18 ~ 1.36 kg C/m2)的2倍。在根际1 mm范围,吸收根根际土壤有机碳储量对根际土壤有机碳总储量的贡献(63.5%)远高于运输根根际(36.5%)。上述结果表明,吸收根在高寒针叶林根际土壤碳中发挥主导作用。本研究强调基于功能的细根分类与根际土壤碳储量结合运用于陆地表面土壤碳循环模型中具有重要意义,可为准确预测高寒针叶林生态系统土壤碳动态提供科学依据。研究背景:土壤有机碳(SOC)的形成、稳定和周转等动态变化过程已经成为当前生态学和土壤学领域亟需解决的核心科学问题之一。根系在调控土壤碳动态中的重要作用已经得到广泛认可,并在很大程度上取决于根系功能属性特征。具体而言,作为一个高度复杂且功能异质的分支系统,根系生理代谢活性在吸收根和运输根之间具有明显差异,从而导致根际SOC固存和稳定性在不同根系功能模块间呈现出高度的异质性特征。但是,现有的根际模型和实验研究大多将根际区简单视为一个均一体,很少考虑根系生命活动诱导的根际土壤碳动态在根系功能属性分化上的变异,极大地限制了在细微尺度上对森林生态系统土壤碳固存和稳定性机制的全面认识与理...
作者: 植物所
发布时间: 2020 - 03 - 17
点击次数: 0
高等植物的叶绿体是十亿年前蓝藻被真核生物吞噬后经内共生演化而来,共有3000个左右的蛋白,其中95%以上由核基因编码。核基因编码的叶绿体蛋白在细胞质中合成后,通过叶绿体内、外被膜和类囊体膜转运通道运输到叶绿体内的不同区域使叶绿体行使光合作用功能。因此,研究叶绿体蛋白跨膜运输方式对于探讨叶绿体的生物发生、光合器官的建成和功能以及真核生物的起源和进化等都具有重要意义。此前研究主要关注的是叶绿体被膜转运通道以及类囊体膜转运通道。然而,叶绿体蛋白在跨过叶绿体被膜之后,是如何穿过拥挤的基质空间,并精确地靶定到特异性的类囊体膜受体复合物的分子机制仍不清楚。中国科学院植物研究所张立新团队以模式植物拟南芥为材料,发现了位于叶绿体基质的关键性蛋白转运分选因子STT1与STT2,并揭示了其介导的分选、靶定机制。STT1与STT2形成寡聚体复合物特异d识别底物信号肽从而结合、分选底物,之后STT复合物与类囊体膜受体复合物Hcf106结合完成其靶定运输过程。阻碍STT-Hcf106结合会阻断Tat底物的运输,影响植物光合作用从而导致植物致死的表型。相分离作为近年来细胞生物学的一个热点受到了广泛的关注,而相分离对植物生理活动的调控依然不清楚。该研究通过大量的体内体外实验进一步揭示了相分离参与调控底物的分选、靶定机制:底物结合激活STT复合物进一步的组装相分离形成浓缩的液滴。STT-底物相分离液滴协助底物穿过叶绿体基质从而靶定到类囊体膜。而Hcf106能够抑制STT的相分离从而释放底物,完成底物的正确运输与装配。该研究首次发现了相分离(形成液滴)调控叶绿体蛋白的运输,从而调控叶绿体的生物发生。同时该研究通过分析细菌、酵母、高等植物与动物的分选因子,发现相分离可能是驱动蛋白分选运输的普遍机制。这是国际上首次提出相分离驱动叶绿体内蛋白分选的新机制,强调了相分离调控蛋白运输是在所有物种都存在的普遍机制,同时也开拓了相分离与蛋白运输的研究领域,为研究细胞是如何精确调控其各种生理活动拓展了思路。该研究成果于3月12日发表在国际学术期刊《细胞》(Cell)。
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务