028-8525-3068
新闻动态 News
News 行业新闻

文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关

日期: 2023-06-21
标签:

原名:Root exudation patterns of Chinese fir after thinning relating to root characteristics and soil conditions

译名:杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关

期刊:Forest Ecology and Management

IF:4.384

发表时间:2023.4

第一作者:Jiahao Zhao

文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关


摘要

背景:根系分泌物对森林生态系统地下碳分配和养分循环至关重要。在亚热带地区,关于森林管理活动(如间伐)对成熟森林根系分泌速率的影响鲜有研究。


方法:本实验以29年林龄的杉木人工林为研究对象,探究三种不同间伐强度条件下,即对照组(不间伐),轻度间伐(LIT,砍伐的30%树木个体)和重度间伐(HIT,砍伐的70%树木个体),根系分泌速率(单位质量、长度和面积)的变化模式。


结果:研究表明,根系分泌物速率在间伐后增加,并表现出明显的季节动态:即夏季较高而冬季最低。分泌物速率与微生物量碳和微生物量氮呈正相关。此外,根系分泌物速率与根尖数量和根系活力呈正相关。随着根直径的增加和比根面积的降低,根系释放更多分泌物,表明杉木的采取资源保守型策略的根系更倾向于选择促进分泌物的释放而不是通过优化形态特征来获取养分。此外,间伐总体上降低了杉木人工林的土壤总碳含量。其中,重度间伐条件下土壤总碳含量高于轻度间伐,这表明重度间伐条件下根系分泌物的增加可以减少土壤碳的损失。


结论:这些发现阐明了间伐如何通过改变土壤条件和根系特性来影响根系分泌物速率,同时有助于我们预测地下碳分配和养分循环对森林管理活动的可能响应。


研究背景

根系分泌物是地下碳输入的重要来源,在地下碳循环中发挥着重要作用。根系分泌过程将大量有机碳不断地从细根转移到根际土壤中,从而增加土壤养分含量和微生物活性。因此,由根系分泌物介导的土壤养分循环是维持森林生态系统功能的关键过程。尽管根系分泌物在地下生态过程中的重要性已被广泛认知,但根系分泌物输入模式对森林管理措施(如间伐)的响应仍不清楚。


间伐是最重要的森林管理措施之一,通过减少林分密度、改善森林微环境和土壤资源条件,达到改变森林生态系统的生产力和功能的目的。以往研究表明间伐可以通过改变剩余树木的光合利用效率来影响树木生理代谢活动。此外,间伐往往会增加森林冠层间隙,促进植物叶片、茎和根生物量,同时有更多的碳水化合物用于储存,这可能会增加过剩的碳从细根到土壤的运输。因此,我们假设间伐可促进根系分泌物的释放输入速率间伐强度的增加而增加。


根系分泌物已被确定为一种竞争型和资源获取型根系性状。根系形态和生理性状是影响根系分泌物的主要生物因素。最近的研究表明不同的细根性状会导致不同的根系分泌物速率。然而,根系性状在多大程度上影响森林间伐下根系分泌物的输入模式尚不清楚。


以往研究表明根系分泌物随着土壤养分和水分有效性的降低而增加,表明根系分泌过程是树木对外部条件的应激反应。间伐通过改变林分小气候和加速植物碎片分解来改善土壤资源条件,从而可能影响根系分泌物的输入模式。


基于以上背景,本研究的研究目标为:(1)量化不同间伐强度下杉木的根系分泌物输入速细根特征和土壤理化性质的季节动态规律。(2)探讨根系分泌物输入模式与土壤特性和细根特性之间的关系。我们假设:(1)间伐能够增加根系分泌物输入速率,并且随间伐强度的增加而增加;(2)间伐后根尖数量、根活性、比根长和比根面积的增加以及根组织密度的降低,能够刺激根系分泌物的释放;(3)在土壤资源不稀缺的条件下,土壤特性对分泌物输入速率有积极影响。


主要结果

1. 根系分泌物输入速率的变化规律

根系分泌物输入速率表现出明显的季节动态性,即夏季最高,冬季最低(图1)。总体上,与对照相比,LIT和HIT处理下单位根重分泌物速率分别提高了约3.0%(P > 0.05)和19.7%(P < 0.05)。此外,春季、秋季和冬季不同间伐强度间的分泌物速率无显著差异。

文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关

1 不同间伐强度下,杉木的根系分泌物输入速率的变化LIT轻度间伐HIT重度间伐


2. 根系特征对间伐的响应

HIT显著增加了夏季根尖数量(P < 0.01),也显著增加了夏季和秋季的根尖活性(P < 0.01;P < 0.05;图2)。不同间伐强度下的比根长在夏季和冬季也有显著变化(P < 0.05;图2)。此外,LIT在秋季增加了比根面积(P < 0.05;图2)。与对照组相比,HIT在春季和冬季降低了根组织密度,而LIT增加了根组织密度(P > 0.05;图2)。

文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关

2 在不同间伐强度下,杉木的(a)根径、(b)根尖数、(c)根活性、(d)比根长、(e)比根面积和(f)根组织密度的季节性变化。LIT轻度间伐HIT重度间伐


3. 土壤特性对间伐的响应

土壤温度和含水量在各季节间差异显著(P < 0.001;P < 0.001)。土壤温度在夏季较高,冬季较低,而土壤含水量在春季和秋季较高,冬季较低(图3)。土壤总碳、氮也受季节的显著影响。除春季外,对照组的土壤总碳含量最高,其次是HIT和LIT(P < 0.05)。土壤微生物生物量在HIT中最高,在LIT中最低。总体而言,间伐降低了春季和夏季的土壤总氮,同时增加了HIT中的微生物量氮(图3)。

文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关

3 不同间伐强度下,土壤(a)温度、(b)含水量、(c)总碳(TC)、(d)微生物量碳(MBC)、(e)总氮(TN)和(f)微生物量氮(MBN)的季节变化。LIT轻度间伐HIT重度间伐。


4. 根系分泌物与土壤和细根性状的关系

单位根质量、长度和面积的分泌物输入速率与根直径、根尖数和根活性呈正相关(图4)。比根长则与分泌物输入速率负相关。单位根质量、长度和面积的分泌物输入速率均随土壤温度、土壤含水量和微生物量碳和微生物量氮的增加而提高(图5)。分泌物输入速率与土壤总碳和总氮没有显著相关性(P>0.05;图5)。

文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关

单位根质量、长度和面积的分泌物输入速率和根直径(a-c)、根尖数(d-f)、根活性(g-i)、比根长j-l)之间的双变量关系。LIT轻度间伐HIT重度间伐


文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关

5单位根质量、长度和面积的分泌物输入速率与土壤温度(a-c)、含水量(d-f)、微生物量碳(g-i)、微生物量氮(j-l)之间的双变量关系。LIT轻度间伐HIT重度间伐


结论

1. 本研究对杉木根系分泌物输入速率的种内变异对间伐强度的响应提供了新的见解。

2. 间伐可能增加了剩余树木的光合产物,导致根系向土壤中分泌更多的可溶性碳。

3. 土壤温度和含水量的季节性变化驱动了分泌物输入速率的时间动态。

4. 间伐通过增加根尖的数量和根系活性来刺激夏季根系分泌物释放速率。

5. 直径越大和比根面积越小的根能够释放更多分泌物,表明成熟杉木林的根系更倾向于促进分泌物的释放而不是通过优化形态特征来获取资源。



文献解读|杉木间伐后根系分泌物输入模式与根系特征和土壤条件有关
END


◀栢晖生物▶ 

 特色检测指标

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技2号楼14层

  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 06 - 17
    文献解读原 名:Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon译 名:盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量期 刊:Science BulletinIF:18.9发表日期:2024.5.18第一作者:Lin Chen01摘要盐碱地是应对全球气候变化和保障粮食安全的重要耕地储备资源,部分原因是它可以储存大量的碳(C)。目前尚不清楚盐碱土地复垦(将盐碱土地转化为耕地)如何影响土壤碳储存。本研究结果表明,与盐碱地相比,盐碱地复垦显著增加了植物来源的碳积累和植物来源的碳与微生物来源的碳比率,导致植物源碳成为SOC储量的主要贡献者,POC封存和MAOC封存分别与盐碱复垦引起的植物和微生物来源的碳积累密切相关,即盐碱地复垦通过优先促进植物来源的碳积累来增加表层土壤中的碳储存量。02引言土壤盐碱化使全球土壤(0-30cm)SOC储量减少了3.47t ha−1。利用土壤修复技术可以有效地逆转这一现象。在农业生态系统中,微生物残体(特别是真菌残体)优先聚集土壤的POC部分。植物和微生物源碳与POC和MAOC含量之间的关系以及植物和微生物来源的碳对盐碱条件下SOC储存的贡献知之甚少。两个公认的生物标志物(木质素酚和氨基糖)已被广泛用于估计植物衍生木质素残体和微生物残体对SOC库的贡献。因此,我们分别使用木质素酚和氨基糖作为植物和微生物残体碳的表征。本研究的目的是(i)量化盐碱土地复垦对表层土壤碳储量的影响,确定影响碳储量的关键因素;(ii)评估植物和微生物来源的碳与POC和MAOC池之间的关系,以及植物和微生物来源的碳对中国主要盐碱区SOC储存的贡献。盐碱地复垦对中国主要盐碱区...
  • 点击次数: 0
    2024 - 05 - 27
  • 点击次数: 0
    2024 - 05 - 20
    文献解读原名:Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate译名:通过13C标记光合产物的追踪,禁牧通过根源碳的微生物残体增加了土壤有机碳期刊:Biology and Fertility of SoilsIF:6.5/Q1发表日期:5 March 2024第一作者:瞿晴01摘要背景:草原储存了大量的碳,然而,禁牧后土壤碳固存的潜在机制尚不清楚。本研究旨在阐明温带草原在长期禁牧后(~40年) ,植物和微生物残体对土壤有机碳(SOC)贡献的驱动因素。方法:现场进行了13C-CO2原位标记实验,并结合生物标记物追踪植物-土壤系统中的13C,以评估植物对土壤的碳输入。结果:长期禁牧提高了植物和土壤碳库包括地上生物量、地下生物量、微生物生物量和残体;且禁牧草地新输入光合碳在植物和土壤系统中的分配量高于放牧草地,但在土壤CO2中的分配量低于放牧草地。新输入的光合碳在土壤和微生物量中的分配量与根系中光合碳的分配量呈正相关关系。与放牧相比,禁牧提高了草地土壤有机碳含量约2倍,但木质素酚对土壤有机碳的贡献甚微(0.8%),而真菌残体碳的积累是导致土壤有机碳含量增加的主要因素。结论:受矿物颗粒保护的微生物残体碳是导致禁牧草地土壤有机碳含量高于放牧草地的主要因素。总之,禁牧不仅增加了地上生物量,也增加根系生物量和根际沉积,导致微生物生物量和残体的形成,在矿物基质的保护作用在土壤中长期稳定存在。禁牧条件下,微生物残体特别是真菌残体对SOC的积累贡献大于木质素酚。02主要结果图1 放牧和禁牧样地地植物-土壤-微生物系统的碳储量。(a)地上部分碳库;(b)根碳库;(c)土壤有机碳库(0−25c...
  • 点击次数: 0
    2024 - 05 - 17
    文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-气候反馈水平的主要不确定性来源。生态系统和生物地球化学模型假设Q10为常数,尽管人们普遍认为Q10随温度等环境条件而变化。然而,决定Q10在大空间尺度上变异性的非生物和生物因素的相对贡献在很大程度上仍然未知。解释Q10模式的主要驱动因素通常考虑土壤微生物群、基质数量、矿物保护、生化抗性和环境因素的影响。首先,土壤微生物组(即微生物生物量、丰富度和群落组成)是有机物分解的最终参与者,并随着气候变暖调...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
微信公众号
Q  Q : 2105984845
地址:中国四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务