028-8525-3068
新闻动态 News
News 行业新闻

文献解读|微生物残体对土壤有机质贡献的定量评价

日期: 2023-05-09
标签:

原名:Quantitative assessment of microbial necromass contribution to soil organic matter

译名:微生物残体对土壤有机质贡献的定量评价

期刊:GLOBAL CHANGE BIOLOGY

IF:13.212

发表时间:2019.9

第一作者:梁超




摘要

近年来,由于土壤碳转化和固存在缓解气候变化中的作用越来越需要被量化,而受到了极大的关注。尽管对土壤有机质性质的认识最近有了很大的改进,但微生物残体作为持久性有机质的一部分的定量重要性仍然存在根本的不确定性。由于缺乏微生物物质是否构成土壤中大部分持久性碳的定量评估,解决这一不确定性受到了阻碍。由于与非微生物有机碳的分子特征重叠,土壤中微生物残体的直接测量非常具有挑战性。

此研究对1996年至2018年间发表的现有生物标记氨基糖数据进行了全面分析,并结合生态系统方法、元素碳氮化学计量学和生物标记标度的新占用,展示了一套量化全球温带农业、草原和森林生态系统中微生物衍生碳对表层土壤有机碳库贡献的策略。研究发现微生物残体碳可以占到土壤有机碳的一半以上。

因此,建议下一代野外管理需要促进微生物生物量的形成和残体的保存,以维持健康的土壤、生态系统和气候。研究分析对改善当前的气候和碳模型以及帮助制定管理实践和政策具有重要意义。


研究背景

近年来,由于越来越需要了解和预测全球碳循环及其在气候变化中的作用,陆地生态系统中碳转化和固存的研究受到越来越多的关注。在全球范围内,土壤有机质(SOM)所含的碳比植被和大气中储存的碳加起来还要多。因此,土壤有机碳(SOC)作为植物光合作用产生的碳通量通过异养矿化返回大气的主要通道,在地球系统的全球碳循环中起着重要作用。因此,全球土壤碳储量相对较小的变化将对大气CO2浓度产生重大影响。

土壤碳储量是由微生物代谢活动和植物碳输入之间的平衡决定的,理解土壤碳动态的机制基础依赖于对微生物介导过程的理解。微生物是两个关键的,对比机制的核心:不仅通过矿化二氧化碳减少有机碳储量,而且通过微生物生物量的形成和与矿物质相关的残体的稳定,在土壤结构中,或通过结壳,例如,铁或硅沉淀,增加有机碳储量。

到目前为止,人们已经接受有机碳储量在很大程度上受到微生物合成代谢活动的影响,并强调土壤中最持久的有机碳可能不是由植物凋落物或其残留物组成的,而是首先受到微生物生物量的碳的影响。这一考虑是基于这样一个事实,即SOM中易于降解和可接近的分子将被微生物消耗,甚至被吸收的分子也可以被降解。然后,这些分子将部分矿化以获得能量(分解代谢),部分用于构建微生物生物量。在细胞死亡和随后的裂解和碎裂之后,一些有机细胞化合物仍然存在,从而形成微生物残体碳。


微生物残体碳主要包括来自细胞包膜碎片的颗粒有机物质,以及一些胶体状的前细胞质物质,如酶、核糖体和小生物聚合物,这些物质在下一代微生物的再利用中累积下来。然而,与植物残体相比,微生物残体在何种程度上以及以何种方式被保留,目前尚不清楚。这个明显的难题导致了大量的相关研究,这些研究提供了一些新兴的理解,这些理解集中在微生物作为SOC稳定的参与者,而不仅仅是作为其矿化到CO2的参与者。例如,已经有研究呼吁明确考虑将微生物残体直接纳入缓慢循环的土壤碳库,已经为土壤中的有机碳循环开发了有趣的概念框架,并且正在出现必要的支持微生物死亡质量动力学的研究和数据库。

尽管人们认识到微生物残体对长期SOM的贡献可能与生物量不成比例,但研究缺乏计算SOM中残体碳数量的框架。量化微生物衍生的总有机碳的比例具有重要的科学意义和实用价值,例如,它是在全球背景下理解和参数化土壤过程的先决条件,特别是对于全球碳模型参数的大尺度计算,以及管理稳定过程。在此,研究基于现有证据和迄今尚未探索的基本质量关系,专注于SOM中微生物来源的残体的定量,并计算全球温带农业、草地和森林生态系统中微生物残体碳评估的贡献。研究还开发了土壤微生物残体定量的战略框架,这可能会提高对土壤有机碳动态的基础知识,以提高气候模型的预测能力和土地利用政策的制定。


主要结果

1.土壤有机质理论的范式转变

在过去的十年中,对SOM的理解取得了巨大的进步。传统上,观察到的植物凋落物的逐渐分解引发了将SOC储存解释为植物碳在腐殖化过程中变为CO2后的残体的观点。这一观点与新出现的证据相冲突,即碳储存是通过微生物难以访问的碳与容易代谢的碳之间的微妙平衡来实现的。现在认识到,在土壤中为碳封存和土壤肥力提供基础的有机物形式,并不是传统上定义的具有未确定结构组成的“腐殖质物质”,而是由各种可分析定义的结构组成,这些结构主要因其所处的局部环境和系统特性而在土壤中持久存在。与传统观点相反,这些物质中很大一部分可能并非部分分解的植物化合物,而是微生物代谢产物,在微生物食物链中储存和重新加工,并以残体的形式存在于土壤中。

因此,这些有机化合物中的大部分可能由微生物残留物和已经死亡的真菌和细菌的细胞包膜为主导的生物分子结构组成。不幸的是,很少有科学家试图以有意义的方式对大量的死亡微生物进行量化。2007年,Simpson等人首次提出了是否低估了土壤中的微生物生物量的问题,并报道了从土壤中提取的碱性组分中有50%可能是由微生物细胞中可识别的内容物组成的;然而,目前在土壤微生物残体定量方面取得的进展有限。


2.建模和实验为基础的定量

理论和实验研究都表明,微生物通过细胞生成、种群生长、死亡、腐烂和残体碳形成的迭代过程,对持久的有机碳池做出了重大贡献。碳在土壤中通过微生物途径的流动已被概念化建模,以追踪活微生物生物量、微生物残体和大气之间的碳转换过程,或探索微生物群落生物量周转如何改变微生物衍生的有机碳分配的程度。因此,模型模拟表明,在假设恒定凋落物输入和模型参数选取的有限文献数据的基础上,平衡稳定状态下微生物衍生碳对SOC的贡献可能高达82%。根据真菌和细菌的丰度、微生物生物量和残体的周转以及微生物对凋落物的代谢反应等参数,它的范围可以在47%到80%之间。因此,模拟研究表明,微生物衍生的碳驱动有机碳的固存,其程度可能是生态系统特有的,并反映了环境变化;因此,我们迫切主张在未来的研究中考虑定量生态系统方法。

氨基糖生物标志物已广泛应用于有机碳微生物来源的追踪。在微生物死亡后,它们的细胞成分会存活下来,留存并积累。不同的微生物群体产生不同的氨基糖。例如,真菌在土壤中产生大部分葡萄胺,而细菌产生麦拉酸,其平均转化因子分别为9和45,建议将葡萄胺转化为真菌源碳和将麦拉酸转化为细菌源碳。在最近的一项研究中,使用氨基糖评估微生物源碳在持续添加农场肥和矿质肥的沙质农业土壤中的积累,发现使用将氨基糖转化为微生物源碳的平均转化因子,微生物源碳对总SOC的相对贡献从0-0.25m处的68%下降到0.5-1.0m处的24%。然而,至今还没有进行基于转化因子的策略来重新处理现有土壤数据并评估微生物死物质对SOC贡献的定量潜力。


3.微生物和土壤中的基本质量关系

微生物残体对有机碳的贡献也可以从微生物和土壤中有机氮分布模式的元素碳氮化学计量学中得到。这种方法可能是合理的,因为据报道,微生物将它们的平均碳氮比(C/N)限制在一个相对狭窄的范围内,尽管它在不同的生态系统中可能存在显著差异。因此,研究使用基于N相关度量的质量关系来计算微生物残体与土壤有机氮的比例关系,从而提供了对残体碳的独立评估。以往的研究表明,在大多数情况下,土壤氨基糖- N的总含量显著超过土壤微生物生物量- N的总量。在长期稻田管理的时间序列中,连续栽培超过190-2000年的地块,土壤氨基糖中氮的浓度超过了生物质的氮含量的2倍。

这一因素在如此长时间内的稳定性表明,氨基糖水平大致反映了微生物来源的生产和降解之间明显的生物稳定状态。一般来说,活微生物的微生物生物量对总氮库的贡献平均约为3%。然而,微生物细胞氨基糖- N仅占活微生物生物量N的一小部分,据报道,真菌物种干物质中葡萄糖胺含量为49 mg/g,革兰氏阳性细菌为13.9 mg/g,革兰氏阴性细菌为3.7 mg/g。细胞肽聚糖是一种由糖和氨基酸组成的聚合物,在大多数细菌的质膜外形成网状层:在活的革兰氏阳性细菌细胞中,它可以含有6倍于细胞氨基糖- N的N,肽聚糖由2个氨基糖- N单位和9个氨基酸单位组成,其中一个通常是赖氨酸,含有两个N原子;相比之下,活的革兰氏阴性菌的细胞肽-狗聚糖含有的氮是细胞氨基糖- N的三倍,其中两个单位的氨基糖- N补充了四个单位的氨基酸- N。此外,额外的微生物氮可能附着在肽聚糖上,如磷壁酸,并嵌入蛋白质中。因此,微生物细胞中一小部分氨基糖与很大一部分非氨基糖N(主要是蛋白质,因此是氨基酸和核酸)相关。


生物标志物氨基糖与实际细菌或真菌质量的关系是可变的,因为不同微生物的转化因子存在显著差异,但为了探索一系列微生物衍生的碳到SOM,这构成了适当的简化。在土壤中,以65%的革兰氏阳性细菌和35%的革兰氏阴性细菌的平均份额来计算,保存在肽聚糖中的土壤氮量约为杆菌酸-N的11.2倍。由于土壤样品中的微生物酸氮通常占总氮的0.2%-0.5%,因此土壤氮库的2.2% - 5.6%包含在细菌肽聚糖中。由于土壤中总细菌残留物的存储量远高于细菌生物量,在氮的转换系数为6.67之后,其系数为4.85,因此大约11%-27%的土壤氮是细菌残体氮。就微生物细胞而言,真菌氮的一部分仍然是未知的。


土壤中葡萄糖胺的含氮量是菌酸的5-90倍,而在活细菌中,这一比例从2到8不等。以细菌中氨基葡萄糖-N与乳酸菌酸-N的最大比值为8倍,土壤中氨基葡萄糖-N与乳酸菌酸-N的最大比值为90倍计算,额外的氨基葡萄糖一定来自真菌,真菌的几丁质细胞壁内含有葡萄糖-氨基葡萄糖作为单体。由于土壤中常见的真菌与细菌的比例在0.5-5之间,细菌残体中氮的最大含量为27%,因此真菌和细菌残体的氮含量可能达到土壤有机氮池的40.5%至100%。如果通过推测在土壤残体碳形成过程中微生物细胞维持的平均C/N比率为6.7,并基于土壤的平均C/N比率为11.5,这意味着微生物残体对总有机碳的贡献可能在23.6%至58.3%之间。或者可以通过考虑细菌和真菌生物量之间的C/N比率变化来指定此计算。根据Paul和Clark,细菌的平均C/N为4(范围在3到5之间),真菌的平均C/N为10(范围在4.5到15之间)。在类似于上文所述的计算中,这将导致微生物残体氮对土壤有机氮的贡献为27%-100%。


因此,根据土壤平均C/N比值(11.5)以及真菌和细菌的平均C/N比值(10),估计总有机碳的23% - 87%可能来自真菌残体,9%-35%可能来自细菌残体。


4.在温带土壤中,微生物死亡物质对碳储存的贡献

研究通过1996年至2018年间发表的现有氨基糖数据,对全球温带农业、草原和森林生态系统的文献进行了整理,并使用生物标志物氨基糖向残体碳的转化因子对其进行了再处理。

          文献解读|微生物残体对土壤有机质贡献的定量评价

                 图1 土壤生态系统碳循环示意图


假设细菌生物量含有46%的有机碳,并且基于65%的革兰氏阳性细菌和35%的革兰氏阴性细菌的比例,细菌组织中的革兰氏酸为10.3 mg/g-dw,通过将细菌残体的碳浓度直接乘以45来计算。
真菌死亡物质的碳含量是基于两个步骤计算的:
(a)通过从总的葡萄糖胺中减去细菌葡萄糖胺来估计真菌葡萄糖胺,假设在细菌细胞中,杆菌酸和葡萄糖胺平均以1:2的摩尔比出现;
(b)将真菌葡萄糖胺的浓度乘以9。微生物死亡物质的碳含量近似为真菌死亡物质碳和细菌死亡物质碳的总和。


研究证明微生物残体对表层土壤有机碳(<0.25 m)的贡献因生态类型与不同植被和土地利用而异(图2)。温带农业土壤(55.6%)和草地土壤(61.8%)中微生物残体碳的贡献占总有机碳的50%以上,温带森林土壤中微生物残体碳的贡献约占30%。在温带森林土壤中,微生物残体碳对有机碳的贡献较低,这可以解释为耕作缺乏混合和地表凋落物掺入的稀释效应,森林土壤的有机碳含量(86.7 g/kg)明显高于草地(35.3 g/kg)和农业土壤(18.2 g/kg)。

此外,碳氮比较大的森林土壤氮素限制可能会阻碍植物凋落物的分解、微生物生物量的转化和微生物坏死块的产生,从而导致矿物相关有机质的减少。这表明,植物凋落物对有机碳形成的“体外微生物修饰途径”主要发生在温带森林土壤中,突出了使用综合框架来理解SOM循环的必要性。
   
研究发现,在所有三种研究生态型中,真菌残体碳(约占残体总碳的70%)对有机碳的贡献始终高于细菌残体碳(26%-28%)。残体中真菌的比例始终大于细菌的比例,这可能表明真菌残体组织的输入更大,而不仅仅是它的持续存在。对不同生态系统的磷脂脂肪酸(PLFA)分析表明,活生物量中真菌:细菌的比值经常超过1。这可能是由于真菌菌丝生长产生的生物量的碳消耗较大。值得注意的是,与其他生态系统相比,森林土壤中有机碳(真菌:细菌残体)与细菌贡献的平均比例最大,这与Bailey等人(2002)的观察结果一致,即有机碳的固存似乎与真菌的高丰度相关; 然而,与这一结论相反,定量残体碳估计表明真菌不负责,因为微生物残体碳的总体比例在森林生态系统中最低(图2b),这突出表明微生物残体碳的贡献并不总是有机碳储存的最主要途径。

文献解读|微生物残体对土壤有机质贡献的定量评价

文献解读|微生物残体对土壤有机质贡献的定量评价

图2不同生态型温带土壤总有机碳及微生物坏死体碳的贡献


此外,研究分析表明,在温带土壤中,较低的土壤微生物残体数量与较大的平均C/N比相关,这表明基质质量是影响微生物在地下固碳中的合成代谢作用的关键因素。在碳氮比较高的氮限制土壤中,微生物需要额外的氮来满足其生长需求,因此较低的微生物生长效率和碳利用效率将降低微生物合成代谢产生的碳转移到土壤中的效率,从而使其可以稳定。

文献解读|微生物残体对土壤有机质贡献的定量评价

3基于氨基糖数据定量土壤微生物残体碳的框架



结论

如今,土壤生态学家坚持认为,即使微生物通常不为人所见,我们也不能忽视它们的存在。正如达尔文所说,对于一种不断重复的原因所产生的影响无法进行综合评估,这往往阻碍了科学的进展。因此,我们需要定量数据来描述微生物衍生碳对自然和人工管理生态系统中的土壤有机碳(SOC)储存的贡献。我们预计,微生物残体对SOC的贡献可能具有很大的范围,且在不同纬度的土壤中可能存在显著差异,但其中的原因尚不明确,也没有完全理解。
   
对所有气候区域的土壤微生物残体进行额外研究将对我们理解微生物对碳循环的控制从区域到国家、大陆和全球尺度的作用至关重要。我们推测,微生物衍生的SOC在苔原多年冻土中可能只占很小的比例。在苔原土壤中,微生物代谢受到恶劣环境的限制,例如低温或缺氧,微生物缺乏分解和循环土壤有机物的能力。相比之下,在其他气候位置,我们可能会遇到经过高度加工处理的有机物质,其中土壤有机质主要由微生物合成的材料组成。未来的研究还应关注这种微生物死亡物质在各种土壤环境中的持久性。

了解土壤中生活微生物的碳循环非常动态,为我们理解其死亡物质的长期持久性提供了基础,对控制大气CO2和管理农业生产力具有重要意义。在当前情况下,微生物过程开始纳入建模中,因此,这个领域迫切需要更多的研究来改进相关模型,并帮助制定管理实践和政策。因此,本研究旨在积极呼吁,关注微生物死亡物质在土壤碳稳定化中的重要作用。

论文id:10.1111/gcb.14781

文献解读|微生物残体对土壤有机质贡献的定量评价
END

◀栢晖生物▶ 

 特色检测指标

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定

了解详情so栢晖生物



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 20
    一、试剂药品浓盐酸,氢氧化钠,氯化钡,酚酞二、试剂配制2.1.0.05mol/l盐酸:取4.16ml浓盐酸缓缓加入1000mlUP 水中。2.2.0.1mol/l氢氧化钠:0.4g氢氧化钠用UP水定容至100ml。2.3.酚酞指示剂:称取0.5g酚酞,用95%乙醇溶解定容至100ml。2.4.11mol/l氯化钡溶液:20.82g氯化钡用UP水定容至100ml。三、洗涤方法所有新的玻璃器皿:用洗涤剂清洗干净后,再用自来水洗,再超声,再用UP水冲洗,再放入90度烘箱烘干。四、实验方法4.1 土壤预培养:称取适量土壤样品置于常温下预培养数天,使土壤恢复到常温状态。4.2 密闭培养:将恢复到常温状态的样本,称取10g置于250ml广口具塞瓶中,内置盛有10ml0.1mol/l氢氧化钠溶液的小玻璃瓶,用蒸馏水调节土壤湿度至其最大持水量的60%,5℃恒温培养7天。4.3 测定:培养结束后取出里面盛氢氧化钠的小玻璃瓶,先加入2ml氯化钡溶液,再加入2滴酚酞指示剂,再用0.05mol/l的盐酸滴定至红色消失,记录滴定体积,计算出CO2的释放量,同时做空白对照(空白用水代替)。更多检测相关讯息so栢晖生物了解~
  • 点击次数: 0
    2024 - 09 - 12
    1、试剂柠檬酸(AR) 柠檬酸三钠(AR) 无水甲醇(AR) 三氯甲烷(AR) 丙酮(AR) 甲苯(AR) 氢氧化钾(AR) 冰乙酸(AR) 正己烷(色谱纯) 十九烷酸甲酯(19:0)2、仪器气相色谱仪 冻干机 振荡仪 过柱装置 水浴锅 水浴氮吹仪 干式氮吹仪 高速离心机3、材料高速离心管 试管(100 mL、5 mL) 10 mL具塞试管 3 mL硅胶柱 玻璃滴管(可拆卸橡胶头)黑色塑料袋 玻璃量筒(1 mL、5 mL) 移液器(5 mL、1 mL、100 μL)4、试剂制备柠檬酸缓冲液:称取柠檬酸37.5 g,柠檬酸三钠44.1 g,溶于1 L超纯水中。提取液:依次加入柠檬酸缓冲液64 mL、无水甲醇160 mL、三氯甲烷80 mL,混合均匀。(现用现配,低温隔夜会析出盐)。甲醇甲苯混合溶液(1:1):15 mL无水甲醇、15 mL甲苯混合均匀(现用现配)。0.5 mol/L KOH溶液:称取28.05 g KOH,溶于1 L超纯水中。0.2 mol/L KOH甲醇溶液(2:3):取0.5 mol/L KOH溶液40 mL,溶入60 mL无水甲醇。1 mol/L冰乙酸溶液:取1.74 mL冰乙酸,溶入30 mL去离子水。5、样品处理土样冻干:称取土壤4.00 g(沙土8.00g)于高速离心管中,冰冻过夜,随后放入冻干机冻干。土壤含水率测定:称取土壤5.00 g于105 ℃下烘干3 h,随后冷却至室温,取出称重,计算含水率。6、测定6.1取出冻干土样,加入23ml提取液,避光振荡2h;6.2离心取上清液,重复步骤1 ,合并两个上清液;6.3依次加入三氯甲烷、柠檬酸缓冲液,避光过夜;6.4去除上清液,吹干三氯甲烷;6.5过柱;6.6吹干无水甲醇,用甲醇甲苯溶液、KOH甲醇溶液复溶,水浴,冷却至室温;6.7加入去离子水、冰乙酸...
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务