028-8525-3068
新闻动态 News
News 行业新闻

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

日期: 2023-04-26
标签:
植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向
点击上方”蓝字“关注我们吧


文献分享

原名:Plant growth strategy determines the magnitude and direction of drought-induced changes in root exudates in subtropical forests

译名:植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

期刊:Global Change Biology

IF:13.212

发表时间:2023.3

第一作者:Zheng Jiang

01 摘要

背景:根系分泌物是植物和微生物相互作用的重要媒介物质,对气候变化响应十分敏感。然而,极端干旱如何影响根系分泌物输入速率和主要组分以及物种间响应幅度和方向的差异还尚不明确。


方法:在本研究中,我们原位收集了亚热带森林中四种不同生长速率的树种在控制和极端干旱处理下的根系分泌物,并测定分泌物总碳(C)及其主要成分(如糖、有机酸和氨基酸)的输入速率。还量化了土壤特性、根系形态性状和菌根侵染率以确定根系分泌物变化的驱动因素。


结果:极端干旱显著降低了分泌物 总C(17.8%)、糖(30.8%)和氨基酸(35.0%)的输入速率,但增加了有机酸(38.6%)的输入速率,这些变化在很大程度上与干旱引起的树木生长速率、根系形态性状和菌根侵染率的变化有关。

具体而言,与生长相对较慢的树种相比,生长速率相对较高的树种根系分泌物对干旱的响应更敏感,这种响应差异与根系形态特征和菌根侵染率的变化幅度密切相关。


结论:该结果强调了植物生长策略在介导干旱引起的根系分泌物变化中的重要性。根系分泌物、根系形态特征和菌根共生对干旱的响应之间的协调可以纳入地理模型,以改进气候变化对森林生态系统根际碳动态影响的预测。

02 研究背景

植物根系可以分泌多种有机化合物(根系分泌物)进入根际,其输入总量可占植物光合产物的5%-21%。根系分泌物主要由糖、有机酸和氨基酸等低分子量物质组成,在促进根系与有益微生物的相互作用以及抑制病原体方面发挥着关键作用。植物可以自主积极地改变根系分泌物的速率和成分来选择合理的养分获取策略来应对环境条件变化,包括放牧,气候变暖和二氧化碳浓度升高等。然而,极端干旱如何影响根系分泌物的质量和数量,尤其是在亚热带森林中,目前还不清楚。


在全球变化的背景下,增强的水文循环可能会显著增加干旱事件的强度和频率,从而对陆地生态系统中的植物-土壤相互作用和地下生物地球化学过程产生强烈影响。目前,只有少数研究探讨了极端干旱对根系分泌物输入速率的影响,也产生了不同的结果(升高或降低)。同时,植物还可以改变根系分泌物的数量和组成以提高抗旱性或适应能力。具体来讲,干旱可以降低氨基酸的输入速率,从而维持细胞渗透压,提高植物的水分吸收能力。还可以增加根系有机酸和黄酮的输入速率,促进植物与土壤中抗旱细菌的相互作用。


因此,研究干旱对根系分泌物碳输入速率和组成影响的调控因素有助于阐明根际生态过程和森林生物地球化学循环对环境变化的响应和潜在机制。


干旱对根系分泌物的影响可能受到一系列复杂的非生物因素(如土壤含水量)和生物因素(如树种、根系形态特征和菌根共生)的影响。大量研究表明植物在干旱条件下会改变地下碳分配策略,从而形成具有不同功能的根系性状来促进水分和养分的吸收。由于根系分泌物在获取资源中发挥着关键作用,碳输入速率可能与竞争型的根系性状之间存在关联(如比根长和菌根侵染)。因此,干旱胁迫可能会重塑细根生物量(FRB)、根系形态特征、根系分泌物和菌根共生之间的协调关系,以达到有效获取资源的目的。同时,由于生理和生态特征(如生长速率、菌根类型)的差异,干旱影响根系分泌物的大小和方向可能具有物种特异性。然而,据我们所知,根系分泌物、FRB、根系形态性状和菌根共生与干旱胁迫之间的协调关系尚未被研究。


干旱对根系分泌物的物种特异性影响可能与植物的生长策略有关。快速生长的植物具有获取资源利用策略和较大的表型可塑性,而缓慢生长的植物则具有保守的策略,更多地依赖于与菌根真菌的关联。在干旱胁迫下,相对于缓慢生长的植物,快速生长的植物可能会将更多光合固定C从根系分泌物向FRB、根系形态构建和菌根共生的重新分配,从而显著促进水分和养分的获取。然而,植物的生长策略如何通过调控干旱诱导的根系功能性状的变化来影响根系分泌物 总C和组分的输入速率尚不清楚。


亚热带森林具有较高的固碳能力和植被生产力,也极易受到干旱的影响。增加地下C分配和根系吸收能力被认为是亚热带森林维持水分需求的关键策略,这将强烈影响根系渗出和相关的根际生态过程。本研究在亚热带森林中选择了4种生长速率不同的树种进行降水排除试验(TFE),探讨干旱对根系 总C及其组分(糖、有机酸和氨基酸)输入速率的影响。

我们假设:

1.由于具有获取型资源利用策略的快速生长树种的根系功能性状具有更大的可塑性,快速生长树种的根系分泌物输入速率对干旱的响应比生长缓慢的树种将更加敏感。


2.由于根系功能性状在获取资源方面的重要作用,干旱条件下,树木生长速率调节根系分泌物的程度与根系功能性状和菌根共生的变化密切相关。

03 主要结果

1.根系分泌物总C和组分的输入速率

干旱处理显著降低了(17.8%)四个树种根系分泌物的总C输入速率(图1a)。干旱对总C输入速率的影响与干旱对生长速率的影响显著正相关(R2= 0.66, p< .01)。对照处理和干旱处理的分泌物氮输入速率无显著差异(图1b)。

干旱处理显著降低了根系分泌物糖(30.8%)和氨基酸(35.0%)的输入速率(图1 d和e)。干旱对糖和氨基酸输入速率的影响与干旱对生长速率的影响显著正相关(R2= 0.50, p< .01; R2 = 0.56, p< .01)。相反,干旱处理显著升高了根系分泌物有机酸(38.6%)的输入速率(图1 f)。干旱对有机酸输入速率的影响与干旱对生长速率的影响显著正相关(R2= 0.53, p< .01)。


植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向


图1干旱对根系分泌物总C输入速率(a)、氮输入速率(b)、碳氮比值(c)、糖输入速率(d)、有机酸输入速率(e)、氨基酸输入速率(f)的影响。插图显示了干旱对四种树种根系渗出率的影响(n = 36)。对照处理和干旱处理之间的显著差异用星号表示(p< .05)。


2.根系形态特征、菌根侵染率和土壤特性

与对照相比,干旱处理显著增加了比根长(SRL:60.9%)、比根面积(SRA:26.0%)和菌根侵染率(38.8%)(图2)。生长速率较快的树种具有更大的SRL和SRA。干旱对SRL、SRA和菌根侵染率的影响与干旱对生长速率的影响显著正相关(R2= 0.51, p< .01; R2= 0.36, p< .01; R2 = 0.57, p< .01)。

与对照相比,干旱处理显著降低了根系直径(RD:12.1%)和组织密度(RTD:25.5%)(图2)。干旱对RD和RTD的影响与干旱对生长速率的影响显著正相关(R2= 0.50, p< .01; R2= 0.49)。此外,在控制处理和干旱处理下,四种树种的细根生物量(FRB)均无显著差异(p= .28)。

干旱样地土壤湿度平均为15.4%(v/v),比对照区低31.9%。土壤有机碳(SOC)、TN、土壤总磷、土壤碳氮比(C/N)、土壤氮磷比(N/P)、DIN、土壤AP、土壤温度、pH均无显著差异。


植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向


图2干旱对比根长(a)、比根表面积(b)、根直径(c)、根组织密度(d)、细根生物量(e)和菌根侵染率(f)的影响。插图显示了干旱对四种树种根系渗出率的影响(n = 36)。对照处理和干旱处理之间的显著差异用星号表示(p< .05)


3.小气候、根系形态特征、土壤性质和根系分泌物的关系

相对重要性分析表明,与其他非生物或生物因素(如SOC和pH)相比,相对生长速率、根系形态特征和菌根侵染率共同解释了根系分泌率总C、糖、有机酸和氨基酸的输入速率的大部分变异(图3)。此外,菌根类型对分泌物总C、糖和氨基酸的输入速率也有显著的调控作用。干旱引起的分泌物总C和组分输入速率的变化与相对生长率、根系形态性状和菌根侵染率的变化显著正相关(图4a)。

结构方程模型表明,干旱引起相对生长速率、根系形态特征变化分别解释了分泌物总C、糖、氨基酸和有机酸输入速率变化量71%、72%、63%和73%的变异(图4b)。其中,干旱诱导的相对生长速率的变化是驱动根系分泌物总C和各组分输入速率的最重要的驱动因素(图3和图4)。

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

图3四种植物根系功能性状和土壤特性对根细分泌物总C、糖、有机酸和氨基酸输入速率变化的相对贡献(a-d、n = 72)。AP:土壤有效磷;DIN:溶解无机氮;FRB:细根生物量;MI:菌根感染率;Myc:菌根类型;RD:直径;RGR:相对生长速率;RTD:根组织密度;SM:土壤水分;SOC:土壤有机碳;SRA:比根面积;SRL:比根长;TN:总氮;TP:总磷;ST:土壤温度。显著性水平用*表示(p< .05)。

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

图4干旱对根系分泌物输入速率、相对生长速率、根系功能性状和土壤性质的影响之间的皮尔逊相关系数矩阵和这些变量的结构方程模型(a,b;将4个物种聚集在一起,n = 36)。显著性水平用星号表示(p< .05)。干旱对这些变量的影响(VariableE)计算为Variable(Drought-Control)和Variable(Control)的比值,其中Variable(Drought-Control)表示干旱和控制处理的变量之间的差异,Variable(Control)表示控制处理的测量值。

04 结论

1.极端干旱显著降低了根系分泌物总C、糖和氨基酸的输入速率,但增加了有机酸的输入速率(图5)。


2.植物生长策略介导了干旱对根系分泌物输入速率的影响。具体地,与生长速率相对较慢的树种相比,生长速率更快的树种根系分泌物对干旱的响应更敏感,这种变化与根系形态性状和菌根侵染率的响应程度密切相关。


3.具有不同生长策略的树种间根系分泌物、根系形态性状和菌根共生的协调可能有助于森林抵御极端干旱,并对土壤微生物群落和相关的根际碳动态对土壤碳储存能力产生强烈影响。


植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向图5概念框架图。

论文id:https://onlinelibrary.wiley.com/doi/10.1111/gcb.16685

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向
END

◀栢晖生物▶ 

 特色检测指标

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼14层


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 06 - 17
    文献解读原 名:Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon译 名:盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量期 刊:Science BulletinIF:18.9发表日期:2024.5.18第一作者:Lin Chen01摘要盐碱地是应对全球气候变化和保障粮食安全的重要耕地储备资源,部分原因是它可以储存大量的碳(C)。目前尚不清楚盐碱土地复垦(将盐碱土地转化为耕地)如何影响土壤碳储存。本研究结果表明,与盐碱地相比,盐碱地复垦显著增加了植物来源的碳积累和植物来源的碳与微生物来源的碳比率,导致植物源碳成为SOC储量的主要贡献者,POC封存和MAOC封存分别与盐碱复垦引起的植物和微生物来源的碳积累密切相关,即盐碱地复垦通过优先促进植物来源的碳积累来增加表层土壤中的碳储存量。02引言土壤盐碱化使全球土壤(0-30cm)SOC储量减少了3.47t ha−1。利用土壤修复技术可以有效地逆转这一现象。在农业生态系统中,微生物残体(特别是真菌残体)优先聚集土壤的POC部分。植物和微生物源碳与POC和MAOC含量之间的关系以及植物和微生物来源的碳对盐碱条件下SOC储存的贡献知之甚少。两个公认的生物标志物(木质素酚和氨基糖)已被广泛用于估计植物衍生木质素残体和微生物残体对SOC库的贡献。因此,我们分别使用木质素酚和氨基糖作为植物和微生物残体碳的表征。本研究的目的是(i)量化盐碱土地复垦对表层土壤碳储量的影响,确定影响碳储量的关键因素;(ii)评估植物和微生物来源的碳与POC和MAOC池之间的关系,以及植物和微生物来源的碳对中国主要盐碱区SOC储存的贡献。盐碱地复垦对中国主要盐碱区...
  • 点击次数: 0
    2024 - 05 - 27
  • 点击次数: 0
    2024 - 05 - 20
    文献解读原名:Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate译名:通过13C标记光合产物的追踪,禁牧通过根源碳的微生物残体增加了土壤有机碳期刊:Biology and Fertility of SoilsIF:6.5/Q1发表日期:5 March 2024第一作者:瞿晴01摘要背景:草原储存了大量的碳,然而,禁牧后土壤碳固存的潜在机制尚不清楚。本研究旨在阐明温带草原在长期禁牧后(~40年) ,植物和微生物残体对土壤有机碳(SOC)贡献的驱动因素。方法:现场进行了13C-CO2原位标记实验,并结合生物标记物追踪植物-土壤系统中的13C,以评估植物对土壤的碳输入。结果:长期禁牧提高了植物和土壤碳库包括地上生物量、地下生物量、微生物生物量和残体;且禁牧草地新输入光合碳在植物和土壤系统中的分配量高于放牧草地,但在土壤CO2中的分配量低于放牧草地。新输入的光合碳在土壤和微生物量中的分配量与根系中光合碳的分配量呈正相关关系。与放牧相比,禁牧提高了草地土壤有机碳含量约2倍,但木质素酚对土壤有机碳的贡献甚微(0.8%),而真菌残体碳的积累是导致土壤有机碳含量增加的主要因素。结论:受矿物颗粒保护的微生物残体碳是导致禁牧草地土壤有机碳含量高于放牧草地的主要因素。总之,禁牧不仅增加了地上生物量,也增加根系生物量和根际沉积,导致微生物生物量和残体的形成,在矿物基质的保护作用在土壤中长期稳定存在。禁牧条件下,微生物残体特别是真菌残体对SOC的积累贡献大于木质素酚。02主要结果图1 放牧和禁牧样地地植物-土壤-微生物系统的碳储量。(a)地上部分碳库;(b)根碳库;(c)土壤有机碳库(0−25c...
  • 点击次数: 0
    2024 - 05 - 17
    文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-气候反馈水平的主要不确定性来源。生态系统和生物地球化学模型假设Q10为常数,尽管人们普遍认为Q10随温度等环境条件而变化。然而,决定Q10在大空间尺度上变异性的非生物和生物因素的相对贡献在很大程度上仍然未知。解释Q10模式的主要驱动因素通常考虑土壤微生物群、基质数量、矿物保护、生化抗性和环境因素的影响。首先,土壤微生物组(即微生物生物量、丰富度和群落组成)是有机物分解的最终参与者,并随着气候变暖调...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
微信公众号
Q  Q : 2105984845
地址:中国四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务