028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

日期: 2022-05-11
标签:

原名:Root exudates with low C/N ratios accelerate CO2 emissions from paddy soil

译名:低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

期刊:Land Degradation & Development

IF:4.977

发表时间:2022.4

第一作者:Cai Guan

摘要

根系分泌物可显著调控微生物活性和土壤有机质(SOM)矿化。但根系分泌物及其碳氮比值(C/N)如何调控水稻土有机质矿化尚不清楚。本研究对水稻土添加具有不同碳氮比值(CN6、CN10、CN80和C-only)的模拟根系分泌物(葡萄糖、草酸和丙氨酸不同比例的混合液),以探究不同根系分泌物碳氮比值(C/N)调控水稻土有机质矿化潜在机制。结果显示:与只添加碳(C-only)的处理相比,其余添加根系分泌物(CN6、CN10、CN80)的处理中土壤CO2释放增加了1.8-2.3倍。低C/N比处理(CN6和CN10)代谢商(qCO2)比高C/N比处理(CN80和C-only)增加了12%,表明低C/N比处理下微生物通过增加N-水解酶合成从SOM中获得有机氮需要消耗更多能量。C获取酶/N获取酶比值与qCO2显著正相关。微生物量C/N比值与碳利用效率(CUE)显著负相关,表明高C/N比处理下由于N供给不足促进了N获取酶的释放。以上结果表明,根系分泌物的C/N化学计量比通过影响C和N获取酶的活性来调节微生物C/N比,从而影响微生物生物量的特定反应,进而控制SOM矿化。

研究背景

植物通过由根释放含碳化合物(根系分泌物)或通过相关微生物从土壤中快速吸收养分来改变土壤环境。约有1-10%的光合固定碳由根系分泌物释放至土壤中,其组分主要包括糖类、氨基酸、有机酸、酚类以及其它代谢物。这些物质除了可直接作为微生物利用的底物外,其C/N化学计量比对微生物的利用也具有重要影响。因此,阐明根系分泌物C/N比对微生物底物利用的具体影响及潜在机制对于理解土壤碳氮循环及土壤碳汇强度十分重要。

以往研究已经提出了几种机制来解释根系分泌物如何影响土壤有机质(SOM)的微生物分解。1.根系分泌物为促进微生物对SOM的分解和改变土壤化学和物理特性提供能量;2.不稳定C输入促进微生物生长,增加对氮的需求进而促进微生物从SOM中获取N;3.微生物对C和N的需求变化驱动群落结构变化从而影响微生物对SOM的降解。此外,还需要考虑根系分泌物C/N化学计量比的影响。

基于此,本研究通过不同C/N比的根系分泌物添加实验探究根系分泌物C/N比值变化如何影响微生物活性(胞外酶合成和微生物量化学计量比)以及SOM的降解。提出以下假设:1.只添加C(C-only)的处理会导致微生物资源比率失衡从而抑制微生物活性以及SOM降解;2.含氮物质的添加能够满足微生物的资源比率需求从而促进微生物生长和SOM降解。

主要结果

1. 模拟根系分泌物添加对SOM矿化的影响

各处理间CO2释放的时间动态基本一致。CO2释放速率在培养初期最高(1-4天),培养15天后呈指数下降。在培养末期,达到了一个稳定的水平,只有微小的波动。与对照(只添加等量水)相比,模拟分泌物添加使CO2释放累计量分别升高了25%(CN6)、25%(CN10)、20%(CN80)以及19%(C-only, 图1)。

在培养第3天时,低C/N比值分泌物(CN6和CN10)添加处理下微生物qCO2显著升高(图2a)。然而,所有处理的qCO2在培养第3-45天均显著下降,其下降幅度由大到小排序依次为:CN6 > CN10 > CN80 > C-only > control(图2a)。与之相反,CUE的下降幅度由大到小排序依次为:control > C-only > CN80 > CN10 > CN6(图2b)。这些结果表明,微生物从SOM矿化过程中获得有机氮需要相对较高的能量消耗。

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

 图1 培养45天内CO2释放速率(a)和CO2释放累积量(b)

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图2 培养第3、12和45天的微生物代谢熵(qCO2, a)和碳利用效率(CUE, b)

2. 模拟根系分泌物添加对酶活性和微生物生物量的影响

与对照相比,添加分泌物的处理均促进胞外酶活性。BG和XYL活性升高幅度由大到小排序依次为:C-only > CN80 > CN10 > CN6 > control(图3)。与之相反,在培养第3天时,NAG活性与添加分泌物C/N比值负相关,即CN 6 > CN10 > CN80 > C-only。在培养第3天时,NAG活性与添加分泌物C/N比值正相关,即C-only > CN80 > CN10 > CN6(图3)。BG/NAG比值与qCO2显著正相关而与CUE显著负相关(图4a, b)。MBC/MBN比值与qCO2显著负相关而与CUE显著正相关(图4c, d)。

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图3 培养第3、12和45天的胞外酶活性:β-1,4-glucosidase (BG, a), β-1,4-xylosidase (XYL, b), and β-1,4-N-acetyl-glucosaminidase (NAG, c)

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图4 代谢熵(qCO2)与土壤酶化学计量(BG/NAG)(a)、碳利用效率(CUE)与土壤酶化学计量(BG/NAG)(b)、qCO2与微生物生物量化学计量(MBC/MBN)(c)之间的关系;CUE和微生物生物量化学计量(MBC/MBN)(d)

3. CO2释放速率的结构方程模型分析

SEM显示,各项变量解释了58%的CO2释放速率变异。土壤C/N比值对CO2释放速率具有显著的负效应(-0.29, p < 0.05, 图5),酶化学计量比值(BG/NAG和XYL/NAG)对其具有显著正效应(0.39, p < 0.001, 图5),但DOC/NH4+对其具有直接的负效应(0.30, p < 0.001, 图5)。

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图5 各项变量对CO2释放速率的影响

结论

C-only处理下,SOM降解速率最低,表明单纯的C添加抑制了微生物N代谢,从而减少了从SOM获取N的需求。与高C/N比值相比,低C/N比值的根系分泌物添加促进了SOM分解,表明高C/N比值的分泌物输入有利于SOM积累。以上结果表明,根系分泌物的化学计量比是植物-土壤系统C循环中的重要驱动因子。


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
  • 点击次数: 0
    2024 - 11 - 21
    土壤酶活性,是指土壤酶催化物质转化的能力。常以单位时间内单位土壤的催化反应产物量或底物剩余量表示。土壤酶活性既包括已积累于土壤中的酶活性,也包括正在增殖的微生物向土壤释放的酶活性,它主要来源于土壤中的微生物,动物和植物。土壤酶活的分类:已知的酶根据酶促反应的类型可分为六大类。即水解酶、氧化还原酶、转移酶、裂合酶、异构酶和连接酶。1. 水解酶类: 酶促各种化合物中分子键的水解和裂解反应。主要包括蔗糖酶、淀粉酶、纤维素酶、脲酶、蛋白酶、磷酸酶等。2.氧化还原酶类: 指催化两分子间发生氧化还原作用的酶的总称。主要包括脱氢酶、过氧化氢酶、过氧化物酶、硝酸还原酶、亚硝酸还原酶等。3.转移酶类: 指能够催化除氢以外的各种化学官能团从一种底物转移到另一种底物的酶类,包括转氨酶、果聚糖蔗糖酶、转糖苷酶等。4.裂合酶类: 指催化由底物除去某个基团而残留双键的反应、或通过逆反应将某个基团加到双键上去的反应的酶的总称,主要包括谷氨酸脱羧酶、天门冬氨酸脱羧酶等。5.异构酶类: 酶促有机化合物转化成它的异构体的反应。6.连接酶类: 是一种催化两种大型分子以一种新的化学键结合一起的酶。测定方法分析:1.生化培养法作为酶活测定的重要方法之一,其又细分为分光光度法和滴定法。分光光度法:其基本原理是酶与底物混合经培养后产生某种带颜色的生成物,可在某一吸收波长下产生特征性波峰,再用分光光度计测定设定的标准物及生成物的吸光值,由此确定酶活性的含量。滴定法:如果产物之一是自由的酸性物质可用此法。如脂肪酶催化脂肪水解释放出脂肪酸,脂肪酸的含量可以通过滴定进行定量,通过计算反应过程中脂肪酸的增加量就可以计算出脂肪酶的酶活力。2.荧光法荧光法是一种基于荧光信号的酶活测定方法,其原理是通过测量酶促反应中荧光物质的变化来推算酶活性。荧光法具有较高的灵敏度和选择性,...
  • 点击次数: 0
    2024 - 11 - 14
    草原土壤储存有439 Gt有机碳(SOC),在调节区域乃至全球气候变化进程中起着重要作用。然而,全球气候变化背景下,大气氮沉降的“施肥效应”强烈地影响着土壤碳储存。因此,明确高寒草甸SOC组分对氮、磷富集的响应和潜在机制至关重要。西南民族大学高寒湿地生态保护研究创新团队马文明副研究员课题组依托青藏高原生态保护与畜牧业高科技研究示范基地和四川若尔盖高寒湿地生态系统国家野外科学观测研究站以红原高寒草甸为研究对象进行了长期氮磷添加实验。采取随机区组用尿素(CO(NH2)2)和过磷酸钙(Ca(H2PO4)2·H2O)设计7个施肥梯度,氮肥施尿素(46.65%N),磷肥施过磷酸钙(16%P2O5),施肥梯度分别为(0g尿素+0g过磷酸钙)/m2(CK)、(10g尿素)/m2(N10)、(30g尿素)/m2(N30)、(10g过磷酸钙)/m2(P10)、(30g过磷酸钙)/m2(P30)(5g尿素+5g过磷酸钙)/m2(NP10)、(15g尿素+15g过磷酸钙)/m2(NP30)。研究发现,氮和磷添加导致 SOC含量增加19.95%–36.66%;在相同施肥条件下,SOC含量随着施肥梯度的增加而增加,在N30处理下达到最高;N和P添加促进了脂肪族碳和芳香族碳的富集;与其他处理相比,NP30处理下SOC的稳定性最高,而P10处理下SOC的稳定性最低。表明N和P添加促进了不稳定碳的损失和稳定碳的富集,从而提高了SOC的稳定性,促进了高寒草甸SOC的封存。总体而言,氮磷添加改变了高寒草甸土壤有机碳的理化性质以及SOC的官能团组成,进而促进了SOC积累。因此,在退化的生态系统中添加氮和磷可能是改善土壤碳固存的有效措施。该项研究近期以题为Nitrogen and phosphorus supply controls stability of soil organic carbon in...
  • 点击次数: 0
    2024 - 11 - 11
    栢晖生物特色检测指标——同位素的测定:更所检测相关讯息so栢晖生物了解更多
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务