028-8525-3068
新闻动态 News
News 行业新闻

干旱促进温带森林土壤磷素转化,降低磷的生物有效性

日期: 2022-02-25
标签:

一、文章基本信息

原名:Drought promotes soil phosphorus transformation and reduces

phosphorus bioavailability in a temperate forest

译名:干旱促进温带森林土壤磷素转化,降低磷的生物有效性 

作者Chengjie Renet al.

期刊:Science of the Total Environment

2021年影响因子/JCR分区:7.963/Q1

发表时间:2020.05

 

二、文献阅读内容

1 关键词

干旱;土壤磷生物有效性;磷素转化;微生物量;磷酸酶活性。

2 研究主题和背景

1背景:干旱能不断改变生态系统功能,尤其是关键养分的生物地球化学循环;P作为必需且限制元素,在生态系统关键过程中起着重要的作用,而干旱如何影响土壤磷素转化和磷的生物有效性尚未清楚。

2主题:本研究采用透雨减少法进行了为期4年的田间干旱试验,以研究干旱对温带森林土壤磷动态和生物有效性的影响

3 科学问题或科学假说

科学问题:

干旱对土壤磷的生物地球化学循环及磷生物有效性的影响?(1)将土壤P分为9个组分,探究哪一组分对干旱条件更为敏感,以及在干旱条件下P组分的转化;(2干旱如何影响土壤微生物磷动态,这些微生物特性是否可以解释土壤磷组分的变化;(3)评估三种生物机制对无机磷释放的影响。

4 材料与方法

A.试验样地与实验设计位于河南省森林生态研究站,在林分和环境条件相近的60年生次生林中建立620 m × 20 m的试验区组,设置对照试验。20135月开始干旱处理,历经4

B. 土壤理化性质分析

土壤水分;土壤pHSOCTNTPDOCDONOlsen P

C. 土壤磷组分

采用顺序提取法测定土壤中P的含量Hedley 19829种组分对于磷的生物有效性贡献存在不同意义,

D. 土壤微生物P和酸性磷酸酶活性

氯仿熏蒸法;对硝基苯酚法。

E.数据分析 

所有数据进行正态检验和方差齐性检验,进行单因素方差分析;由于土壤磷动态与土壤水分密切相关,且干旱处理显著降低了土壤水分含量,本研究通过简单回归分析探讨了土壤水分与化学磷和微生物磷参数之间的关系;所有统计分析均采用SPSS20.0进行差异显著性检验。

5 结果

(1) 土壤基本理化性质

干旱条件显著降低了土壤水分,同时也显著减少了土壤TN4.21-3.78g/kg干土),但SOCTPDOCDON没有显著变化。另外四年干旱条件显著降低了土壤pH5.7-5.1)。

(2) 土壤P组分

在此暖温带森林中,Ca磷酸盐(稀/HCl提取)是最丰富的磷组分,这两种无机磷组分约占总磷的一半(49%43%)。同时,该暖温带森林的有机磷形式也占很大一部分(22%28%)。大多数有机磷以中等活性P形式存在(NaOH-PFe/Al氧化物结合),顽固性残余磷(闭蓄态-次生矿物中)大约占总磷的13%-15%;高活性(resin-P),中等活性PNaHCO3-P),潜在活性无机磷(NaOH-Pi)分别占总磷的2%5%6%

干旱条件显著降低了两种生物最有效的土壤无机磷组分(resin-PiNaHCO3-Pi)含量,同时也显著降低了Ca磷酸盐的含量。与土壤生物有效性和Ca磷酸盐组分相比,干旱显著增加了与次生矿物有关的土壤无机P组分含量。

(3) 土壤微生物P和酸性磷酸酶活性

MBPACP都受到干旱条件的负面影响。ACP0.9-0.6umolp-NPg soil/hMBP10.7-6.4mg/kg soil

(4) 土壤水分、土壤P组分以及微生物P特性之间的关系

回归分析:土壤含水量与全磷含量Resin无机磷、HCl-PNaOH-P以及ACP显著相关,除NaOH-P外,均随土壤水分的增加而呈现线性上升趋势。回归分析表明,生物最有效的土壤无机磷含量随土壤酸性磷酸酶活性的增加呈显著的线性增加趋势NaOH和浓HCl提取的有机磷组分随土壤酸性磷酸单酯酶活性的增加呈显著的线性下降趋势

6 讨论  

   暖温带森林土壤磷素生物地球化学循环和生物有效性对干旱非常敏感,本研究结果表明,干旱显著降低了土壤磷的生物有效性,并推动了土壤全磷在不同组分的重新分配,使其向次生矿物磷和有机磷转化。此外,干旱还对土壤微生物磷动态产生了显著的负向影响。这在一定程度上导致了次生矿物伴生磷的富集

(1) 土壤磷组分在干旱条件下重新分配

干旱降低了磷酸钙,主要是磷灰石。以往研究表明干燥的条件更有利于磷酸钙在土壤中的长时间储存,并且钙磷酸盐相对更稳定,但是有研究表明,HCl-P的稳定性取决与pH在高pH的土壤中,HCl可提取磷中往往含有高度稳定的磷酸钙矿物,而在酸性土壤中,磷灰石的稳定性要差得多

(2) 干旱对MBP的负向影响

除土壤无机磷和有机磷组分外,干旱还降低了土壤微生物量磷MBP对环境因子十分敏感,干旱可能抑制微生物的生长并杀死微生物细胞微生物生物量中磷的大量释放导致微生物生物量磷的减少土壤微生物量逐渐被认为是土壤磷动态的主要驱动力

(3) 干旱改变了土壤无机磷的潜在供给途径,降低土壤磷的生物有效性

土壤溶液中的无机磷浓度非常低,生物有效P含量可通过复杂的生物化学过程得到补充。结果表明,质子驱动无机磷释放是无机磷供给土壤溶液最重要的潜在途径。

7 结论

(1) 温带森林持续四年的干旱试验不断地改变了P生物地球化学活性

(2) 干活促进了钙磷酸盐的减少,主要是由于土壤酸化导致其溶解;磷酸钙释放的无机磷不存在于活性组分中,而是转化为次生无机磷组分和有机磷

(3) 干旱引起的土壤磷素再分配不仅直接降低了土壤磷素的生物有效性,而且可能改变土壤溶液中无机磷的补充机制由于干旱倾向于降低质子驱动的无机磷释放电位,而增加了酶和有机酸驱动的无机磷释放电位容量

(4) 干旱可显著改变土壤磷循环及其生物地球化学机制

 

附:

干旱促进温带森林土壤磷素转化,降低磷的生物有效性

干旱促进温带森林土壤磷素转化,降低磷的生物有效性

干旱促进温带森林土壤磷素转化,降低磷的生物有效性

干旱促进温带森林土壤磷素转化,降低磷的生物有效性

干旱促进温带森林土壤磷素转化,降低磷的生物有效性

干旱促进温带森林土壤磷素转化,降低磷的生物有效性


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务