028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

日期: 2021-09-08
标签:

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

#01

摘要


真菌菌丝体是土壤生物地球化学循环的重要组成部分,但目前对真菌残体分解的生态控制仅限于单个地点和植被类型。通过在美国中西部温带橡树稀树草原和阔叶林中部署常见的真菌残体,评估了高质量和低质量真菌残体分解的普遍性及真菌残体分解者群落的变化。真菌残体质量对分解速率的影响在不同的地点和植被类型上差异显著,在初始阶段高质量的真菌残体比低质量的快2.5倍。在不同植被类型中,真菌残体的细菌和真菌群落与土壤微生物群落不同,并受真菌残体质量的影响。霉菌、酵母菌和富营养细菌始终主导着高质量真菌残体。研究表明,无论分解环境的差异如何,与低质量的残体相比,高质量的残体分解更快,并支持不同类型的分解微生物。

#02

关键词

真菌菌丝,真菌菌丝体,黑色素,菌根类型,残体,橡树稀树草原,温带森林

#03

研究背景

土壤碳(C)储量取决于土壤有机质输入及其随后的分解和碳损失速率之间的平衡。真菌菌丝体是土壤碳储量的主要决定因素之一。真菌菌丝生物量储量大,周转快。真菌生物量死亡(即成为残体)后迅速腐烂,并融入活微生物生物量。与其他有机物输入相比,真菌残体的高营养含量也使其成为各种分解者的重要资源。已有研究表明,真菌残体生化性状(氮(N)和细胞壁黑色素含量)是驱动真菌残体分解率的重要预测因子。与黑色素含量低、氮含量高的真菌组织(高质量底物)相比,黑色素含量高、氮含量低的真菌组织(低质量底物)的腐烂速度更慢。通过这种方式可以广泛预测分解速率。然而,目前尚不清楚环境条件如何与初始基质质量相互作用,以控制真菌残体的分解速率。

生态系统中的分解受土壤的生物和非生物特性的影响,而这些特性受植被类型,菌根共生优势类型的影响。土壤性质的差异又导致AM和EM群落中分解者生物的功能变异。因此,为探索基质质量和非生物和生物环境条件的差异如何相互作用来控制真菌坏死块腐烂提供了理想的试验平台。此外,真菌残体分解者群落不同于非根际土壤,并随着时间的推移显示出相当大的组成变化。真菌残体质量能够显著影响细菌和真菌分解者群落组,也可以通过C:N或黑色素含量的变化影响群落组成。然而这些研究都是在单个地点进行的,其普遍性仍不清楚。这项研究有助于深化影响土壤有机质快速循环组分和与快速分解相关的微生物群落的主导因素的理论理解。

#04

研究结果

真菌残体的残留量受残体质量和培养时间的影响显著,而不受植被类型的影响。高质量真菌残体平均比低质量真菌残体分解快2-3倍。然而,残体质量的影响是由培养时间调节的,质量类型之间的差异在14 天时最大(图1)。14 d后,低质量的残体在草原和森林分别增加了60%和80%,但在56 d和92 d后,两种残体的剩余质量均达到了相同的稳定值(~80%的重量损失;图1)。非线性衰变模型显示了相似的趋势,高质量真菌残体的k1值在两个位点都高得多,而k2值在不同位点和残体类型之间基本相等(图1)。

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图1:橡树草原(a)和温带森林(b)的AM主导植被(灰色圆圈)和EM相关植被(棕色三角形)中,高质量的Mortierella elongata和低质量的Meliniomyces bicolor残体的质量剩余比例


AM土壤微生物OTU多样性显著高于EM主导的植被土壤,尤其是草原土壤真菌群落和森林土壤细菌群落(图2a,b)。在两个试验点,残体上的细菌OTU多样性比周围土壤低50%(图2c),真菌OTU多样性相对于土壤也降低了,但仅在草原显著降低(图2d)。微生物多样性平均比低质量残体高20%,平均而言,高质量的残体比低质量的残体显著,在森林中的细菌和真菌都显著(图2e,f)。植被类型对微生物OTU多样性的影响普遍较低,仅AM植被对真菌的影响显著较高(图2g,h)。同样,培养时间对微生物OTU多样性的影响有限,只有细菌在森林生境培养92天后显著提高(图2i,j)。

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图2:橡树草原(a)和温带森林(b)中真菌残体及其周围土壤的细菌和真菌群落多样性指数


与OTU多样性一样,两地点土壤和残体上的细菌和真菌群落组成存在显著差异(图3)。EM植被下土壤以EM真菌和寡营养细菌为主,但AM植被下土壤有少量AM真菌,腐生真菌和寡营养细菌的比例较高(图4)。相比之下,酵母、霉菌和富营养细菌在两个地点的残体上更为常见(图4)。残体质量显著影响两个地点的细菌组成和森林的真菌群落组成。总体而言,高质量的真菌残体中,富营养菌、霉菌、酵母菌相对丰度较高,腐生真菌相对丰度较低。植被类型对微生物群落组成也有显著影响,在AM主导的植被中,真菌残体上的病原菌营养物质更丰富,EM和AM真菌在与其匹配的植被类型中分别更丰富(图4)。培养时间对两个地点真菌残体的细菌群落组成有显著影响,但对真菌群落组成无显著影响,随着时间的推移,两个地点的寡营养细菌丰度都在增加,特别是在森林的低质量真菌残体(图4)

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图3:橡树草原(a和c)和温带森林(b和d)高、低质量残体以及AM和EM主导植被下土壤中的细菌(a和b)和真菌(c和d)群落的非度量多维尺度分析

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图4:不同植被类型(AM和EM主导植被)、残体质量(高和低)和真菌残体培养阶段(14、28和42天)的细菌(a)和真菌(b)相对丰度


一些细菌和真菌属丰度的显著差异取决于残体质量。在不同地点或不同植被类型之间,高质量真菌残体上最常见的丰度较高的细菌属包括Nocardia、Mesorhizobium、Orchobactrum和Chitinophaga(图5)。在低质量的真菌残体上最常见的细菌属包括Burkholderia和Mucilaginibacter。Mortierella是两个地点内高质量真菌残体共有的属,尽管Mucor和Pochonia对高质量真菌残体的偏好相似(图6)。与低质量真菌残体呈正相关的真菌属包括Talaromyces、Clonostachys和Chaetosphaeria。

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图5:不同植被类型(AM和EM植被)对真菌属有显著影响

文献解读| 在不同的植被类型中,基质质量驱动真菌残体腐烂和分解者的群落结构

图6:不同植被类型(AM和EM植被)对细菌属有显著影响



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务