028-8525-3068
新闻动态 News
News 行业新闻

森林扩展到苔原的碳储存临界点与菌根氮循环有关

日期: 2021-09-01
标签: Karina Engelbrecht Clemmensen

原名:A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen

译名:森林扩展到苔原的碳储存临界点与菌根氮循环有关

期刊:Ecology Letters

IF:9.492

发表时间:2021年2月23日

第一作者: Karina Engelbrecht Clemmensen

通讯作者:Karina Engelbrecht Clemmensen

主要单位:瑞典农业大学


#1

Abstract

Tundra ecosystems are global belowground sinks for atmospheric CO2. Ongoing warming-induced encroachment by shrubs and trees risks turning this sink into a CO2 source, resulting in a positive feedback on climate warming. To advance mechanistic understanding of how shifts in mycorrhizal types affect long-term carbon (C) and nitrogen (N) stocks, we studied small-scale soil depth profiles of fungal communities and C–N dynamics across a subarctic-alpine forest-heath vegetation gradient. Belowground organic stocks decreased abruptly at the transition from heath to forest, linked to the presence of certain tree-associated ectomycorrhizal fungi that contribute to decomposition when mining N from organic matter. In contrast, ericoid mycorrhizal plants and fungi were associated with organic matter accumulation and slow decomposition. If climatic controls on arctic-alpine forest lines are relaxed, increased decomposition will likely outbalance increased plant productivity, decreasing the overall C sink capacity of displaced tundra.

#2

摘要

苔原生态系统是全球大气二氧化碳的地下汇。而持续变暖导致的灌木和树木的入侵可能将这个汇变成二氧化碳的来源,从而对气候变暖产生积极的反馈。为了从机理上理解菌根类型的转变如何影响长期的碳(C)和氮(N)储量,我们研究了亚北极-高山森林-高山灌丛梯度上的小尺度土壤深度剖面的真菌群落和C-N动态。地下有机储量从灌丛到森林的转变过程中急剧减少,这与某些与树木共生的外生菌根真菌有关,这些真菌在从有机质中获取氮时有助于分解。相反,杜鹃类菌根植物和真菌与有机质积累和缓慢分解有关。如果缓解对北极-高山林线的气候控制,增加的分解很可能会抵消植物生产力的增加,降低苔原的整体碳汇能力。

#3

Keywords/关键词

Arctic warming, carbon sequestration, decomposition, functional genes, meta-barcoding, mycorrhizal type, nitrogen cycling, soil fungal communities, stable isotopes, treeline ecotone.

关键词:北极变暖;固碳;分解;功能基因;元编码;菌根类型;氮循环;土壤真菌群落;稳定同位素;树线交错带。

#4

前言

由于气候变暖,北极和高寒苔原的植物群落组成发生了变化,即落叶灌木优势度增加。与此同时,高大的灌木或森林物种取代了以前的低矮苔原植被,因为它们的分布沿着纬度和海拔梯度改变。尽管初级生产力很低,但许多苔原生态系统在地下积累了大量的有机质。气候变暖使这些碳储备面临风险,而最敏感的落叶灌木和乔木形成外生菌根共生体,而主导苔原系统的杜鹃类菌根矮灌木和非菌根莎草则相反。植被的菌根类型已被强调为地下养分循环和碳储存的重要预测因子。然而,尽管菌根介导的植物-土壤反馈可能控制苔原生态系统对全球气候的反馈的大小和方向,但在这一背景下,北极北部的过渡几乎没有受到关注。

我们使用从瑞典北部的高山苔原到亚高山白桦林的海拔梯度来检验这一假设:苔原到森林过渡区地下有机质储量的减少与菌根共生的优势类型的转变有关,即从苔原的杜鹃类菌根转变为森林的外生菌根。我们使用有机质特征和微生物群落的精细尺度垂直剖面来推断跨树线交错带的长期碳和氮动态的差异。我们的结果表明,在森林中,某些外生菌根真菌加快了有机物的分解,超过了大型植物本身的分解。且对树根的实验排除证实了它们对森林中有机物分解的促进作用。

#5

研究内容

本研究于2009年在瑞典北部阿比斯科进行实验布置及野外采样工作。分析了样品的酸碱度、有机物含量、总溶解碳和氮库、稳定同位素比率、真菌生物量(麦角甾醇)和微生物群落。

#6

主要结果

1. 树木生物量和土壤碳储量在森林中呈负相关

森林扩展到苔原的碳储存临界点与菌根氮循环有关

图1瑞典北部亚北极-高山森林-荒野植被梯度上四个地点的植被组成和生态系统碳储量。


2.碳-氮动力学

从新鲜凋落物到半分解凋落物层和腐殖质层,C:N随深度而降低(图2a);真菌生物量一般随深度而下降,林下土壤有机碳、氮含量在森林最高,林下有机碳、氮含量之比荒野植被最低(图2 e、f、g);无机氮浓度在荒野植被中最高(图2h),荒野植被和灌木中参与无机氮转化的细菌和古菌的丰度更高(图2k,l);细菌与真菌的比率在荒野植被也最高(图2j)。
森林扩展到苔原的碳储存临界点与菌根氮循环有关

图2瑞典北部沿亚北极-高山森林-荒野植被梯度的四种生态系统类型中氮循环模式的指标。(F:森林;FE:森林边缘;SH:高山灌木;H:荒野植被)。


3. 真菌群落

腐殖真菌在凋落物层中占优势,菌根和其他与根相关的真菌在腐殖质层中占优势(图3a,b);与根相关的子囊菌(包括杜鹃花状菌根真菌)的相对丰度在森林中最高,而外生菌根真菌的相对丰度在荒野植被和灌木生境中最高(图3b,c)。菌丝体分化较少的外生菌根真菌(短距离探索型)在荒野植被和灌木中所占比例较高,而菌丝体为长距离运输外生菌根物种向森林的比例增加(图3c)。
森林扩展到苔原的碳储存临界点与菌根氮循环有关

图3瑞典北部亚北极-高山森林-荒野植被梯度上四种生态系统有机土壤剖面中的真菌群落组成。l:凋落物;h:腐殖质。


4. 树根排除减少分解

凋落物的质量损失、呼吸作用和真菌生物量总体高于腐殖质。森林凋落物第一年的质量损失比荒野植被凋落物快,但森林腐殖质比荒野植被腐殖质慢(图4b,c,d)。排除活的桦树根略微降低了真菌生物量,并且几乎消除了分解袋的外生菌根真菌定殖,而其他与根相关的真菌,包括杜鹃花状菌根真菌,保持不受影响(图4a,c)。活根的存在总体上增加了3年后凋落物和腐殖质的质量损失(图4b)。
森林扩展到苔原的碳储存临界点与菌根氮循环有关

图4 瑞典北部亚北极白桦林中有无树根和外生菌根真菌时五种有机基质的分解。五种有机基质在网袋中培养3年后的真菌群落组成(a)、剩余质量(b)、真菌生物量(c)和呼吸速率(d)。

#7

讨论

      本研究的分解实验证实,积累在该地区苔原系统的大量有机物比附近白桦林中的有机物更容易分解。在本研究中对植被梯度现状的一个合理解释是,其他生物因素(例如竞争)或气候驱动因素(例如生长季节的长度、极端温度或有限的积雪覆盖)是白桦林和相关生物群向上扩张的主要制约因素,而不是低氮矿化。我们提出了一个由外生菌根共生驱动的植物-土壤反馈机制,它将植被变化与前进的亚北极树线上不断下降的地下碳储量联系起来。这一机制预测了植被和土壤动态中协调、相互依赖的模式,导致当苔原变成森林时,生态系统碳储量减少(图5)。森林边界的推进将促进外生菌根真菌群落,该群落有能力释放大量有机氮储备并促进树木生长,潜在地导致强大的、积极的植物-土壤反馈,从而加速树木向前苔原扩展,并支持苔原对气候变暖的积极反馈。

森林扩展到苔原的碳储存临界点与菌根氮循环有关

图 5 树线梯度概念图。(北极绒毛桦形成林线,并与外生菌根真菌群落相关联,在开采氮 (N) 时能够分解土壤有机质。因此与林线以上的灌木和苔原生态系统相比,其有机物质周转速度更快,腐殖质总量更小。而在林线以上的系统,由于较低的分解能力和缺乏外生菌根N开采的树木,促进了无机N循环。)



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务