028-8525-3068
新闻动态 News
News 行业新闻

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

日期: 2021-08-20
标签:

摘要:

最近的研究强调,真菌菌丝残体是土壤C和N输入和储存的重要组成部分。因此,识别控制真菌残体分解的微生物群落和生态因子将为了解真菌有机质如何影响森林土壤C和养分循环提供关键的见解。我们调查了真菌残体上定殖的微生物群落的长期动态过程,利用不同网孔大小的培养袋以控制植物根系和微生物分解者的参与。在30个月的培养过程中,残体相关的细菌和真菌群落在分类和功能上都很丰富,寡营养细菌和根相关真菌(即ECM真菌、ERM真菌和内生真菌)的丰度在网袋分解后期增加。残体相关的β-葡萄糖苷酶活性在6个月时最高,而亮氨酸氨基肽酶在18个月时最高。基于渐近分解模型,根的存在与真菌残体最初更快的分解速率有关,但导致在稍后的采样时间内真菌残体保留的更多。这些结果表明,微生物群落组成和酶活性在分解真菌残体过程中保持动态变化,根系及其共生真菌导致微生物残体周转随着时间的推移而减慢。


关键词:

细菌,北方森林土壤,C循环,ECM真菌,ERM真菌,真菌残体,真菌,菌丝周转。


研究背景:

死亡的真菌菌丝(以下简称真菌残体)在土壤C、N循环中发挥着重要的作用。但迄今为止的大多数研究集中于短期的真菌残体质量损失以及与残体分解相关的早期定殖的微生物群落。考虑到真菌残体较难降解部分的长期存在,微生物分解者在何种程度上仍然活跃地占据这些部分尚不清楚。此外,很少有研究测量了与真菌残体分解相关的酶,这与基于序列的鉴定可以帮助确定不同微生物分解者群体的目标资源。最后,根系可以加速或延缓土壤有机质的分解。并且根系的存在也会影响各种与根系相关的微生物丰度,包括ECM真菌。然而目前尚不清楚随着时间的推移与根系相关的ECM真菌是如何影响真菌残体的。


研究内容:

基于此,本研究对含有真菌残体的网袋首先进行了高通量测序来识别6、18和30个月土壤培养后与真菌残体分解相关的细菌和真菌群落。其次,在同一采样时间内,定量了3种针对不同的C和N组分的酶(β-葡萄糖苷酶、亮氨酸氨基肽酶和N-乙酰葡萄糖苷酶)的活性。第三,重新分析了真菌残体质量损失率,以评估早期和后期取样时根系存在的潜在不同影响。


研究方法:

本研究在赫尔辛基大学Hyytiälä林业野外观测站和SMEAR II生态-大气关系测量站进行。将原位培养的Chondrostereum purpureum残体放入3种不同孔径(1、50、1000μm)的尼龙网袋中,再将网袋随机埋入有机层和矿质层之间,并于分解的第6、18和30个月时收获。


研究结果:

1. 与真菌残体相关的细菌和真菌群落

01


细菌OTU丰富度随时间增加相对稳定,而真菌群落的OTU丰富度随时间增加而增加(图1)。此外,细菌和真菌群落的OTU丰富度随着网孔的减小而显著降低。

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图1 不同培养时间或网孔大小的细菌和真菌的OTU丰富度;不同小写字母表示有统计学意义(p ≤0.05)


NMDS分析显示,与1000μm网袋上的定殖的细菌群落相比,50μm和1μm的细菌群落更为相似(图2a)。培养时间是控制细菌群落结构的主要因素,解释了20.3%的OTU组成变化(图2b)。细菌群落主要由Acidobacteria、Actinobacteria、Alphaproteobacteria、Gammaproteobacteria、Bacilli、Bacteroidia和Verrucomicrobiae等组成(图2c)。Alphaproteobacteria、Gammaproteobacteria、Bacteroidia是培养6个月后最丰富的纲,Acidobacteriia、Actinobacteria、Bacilli和 Verrucomicrobiae培养30个月后逐渐成为占优势的纲。另外,50 μm和1 μm的真菌群落也更为相似(图2d)。培养时间和孔径显著影响真菌群落组成,解释了OTU组成变化的5.7%和4.5%(图2e)。在所有采样时间点,真菌群落以Mucoromycetess纲(高达75%)为主,其次是Agaricomycetes、Eurotiomycetes、Leotiomycetes纲(图2f)。在1000 μm菌袋中,Mucoromycetess的相对丰度随时间的延长而减少,而在50 μm和1 μm菌袋中,Mucoromycetess的相对丰度在整个实验过程中仍占主导地位

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图2 不同培养时间和网孔径大小的OTU组成的(a)细菌和(d)真菌群落的非度量多维尺度(NMDS)分析。不同培养时间和网孔径大小的基于排列多变量方差分析(PERMANOVA)解释(b)细菌和(e)真菌OTU组成的方差,培养时间和网孔大小单独处理。不同培养时间和网孔径大小的(c)细菌和(f)真菌纲相对丰度。


在三个采样时间,定殖的细菌派系总体以富营养细菌为主(图3a)。然而,培养时间显著影响富营养细菌和寡营养细菌相对丰度(表S4),前者随着时间的推移从60%下降到20%,后者从6个月时的2.5%上升到30个月时的8%(图3a)。另外,定殖的真菌派系中腐生菌占据主导地位(图3b)。腐生真菌的相对丰度随时间增加而减少,ECM真菌和ERM真菌的相对丰度随时间增加而显著增加。腐生真菌的相对丰富度随孔径减小而增加,ECM真菌、ERM真菌和内生真菌的相对丰富度随孔径减小而减少(图3b)。

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图3 不同培养时间或网孔大小的(a)细菌和(b)真菌功能群的相对丰度;不同小写字母表示有统计学意义(p ≤0.05)


大部分细菌属受到培养时间的显著影响(图4)。Chitinophaga、Dokdonella、Ferruginibacter、Mucilaginibacter和Pedobacter在培养6个月后是最丰富的细菌属,然后在整个实验过程中下降。在收获6个月时,Bacillus、Cohnella、Granulicella、Mycobacterium和Paenibacillus等细菌属含量不高,但在18和30个月时显著增加。与50和1 μm孔径处理相比,1000 μm孔径处理中Acidothermus、Bradyrhizobium、Burkholderia、Cohnella和Mycobacterium属显著富集。Cohnella、Labilithrix、Paenibacillus和Rhodococcus相对丰度与真菌残体残留量呈显著负相关。Acidipila、Dyella、Flavobacterium、Streptacidiphilus和Streptomyces的相对丰度与真菌残体残留量呈显著正相关。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图4 不同培养时间或网孔大小的细菌属的相对丰度。其中细菌属较为丰富,占总相对丰度的80%。圆的大小与每个细菌属的相对丰度有关。采用双因素方差分析评价了培养时间和网孔大小对各细菌属相对丰度的影响,p值用红色表示(T =时间,M =网孔大小,I =时间×网孔大小);ns表示结果不显著。不同采样时间细菌属相对丰度与真菌残体质量之间的Pearson相关性。只显示了显著的相关性(p ≤0.05)



在整个试验过程中,Mucor是最丰富的真菌属,但在后期显著减少(图5)。在18和30个月的采样次数中,1000 μm真菌袋中的Mucor相对丰度也显著低于50和1 μm真菌袋。第二丰富的Penicillium属在50 μm真菌袋中的含量显著高于1000 μm和1 μm真菌袋。此外,Geomyces、Inocybe、Meliniomyces和Penicillium在6个月的采样时间内与真菌残体质量残留量呈显著正相关,而Amanita, Mortierella, 、Piloderma和Umbelopsis 在后期采样时间内与真菌残体质量残留量呈正相关。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

5 不同培养时间或网孔大小的真菌属的相对丰度。其中真菌属较为丰富,占总相对丰度的80%。圆的大小与每个真菌属的相对丰度有关。采用双因素方差分析评价了培养时间和网孔大小对各真菌属相对丰度的影响,p值用红色表示(T =时间,M =网孔大小,I =时间×网孔大小);ns表示结果不显著。不同采样时间真菌属相对丰度与真菌残体质量之间的Pearson相关性。只显示了显著的相关性(p ≤0.05)




2. 与真菌残体相关的酶活性

02

β-葡萄糖苷酶活性受培养时间显著影响, 6个月时高于18个月或30个月时的活性(图6)。亮氨酸氨基肽酶活性也受培养时间的显著影响,18个月后达到最大值。相比之下,乙酰氨基葡萄糖苷酶活性不受培养时间的显著影响。三种酶活性均不受孔径处理的显著影响(图6)。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图6 不同培养时间或网孔大小的酶活性;不同小写字母表示有统计学意义(p ≤0.05)




3. 真菌残体的质量损失

03

渐近衰减模型显示真菌残体的质量损失取决于孔径大小和时间。与1000 μm菌袋(k = 5.65)相比,50 μm菌袋和1 μm菌袋的衰变常数(k = 0.43和k = 0.50)相对较低。1000 μm菌袋的渐近值是50 μm或1 μm菌袋的1.5倍,这与后期质量损失相关。在第二次和第三次采收中,1000 μm真菌袋中残留的质量稳定在~12%,而50 μm和1 μm真菌袋中残留的质量稳定在~7%(图S4,表S6)。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图7 渐近非线性指数衰减模型适用于各种网格尺寸的处理



原名:Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest

译名:北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

期刊:Molecular Ecology

IF:5.163

发表时间:2021.01.26

第一作者: François Maillard

通讯作者:François Maillard

合作作者:Peter G. Kennedy, Bartosz Adamczyk, Jussi Heinonsalo, Marc Buée

主要单位:

INRAE, UMR IAM, Université de Lorraine, Nancy, France

Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA Natural Resources Institute Finland, Helsinki, Finland

Department of Microbiology, University of Helsinki, Helsinki, Finland

Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland

Finnish Meteorological Institute, Helsinki, Finland



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务