028-8525-3068
新闻动态 News
News 行业新闻

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

日期: 2021-08-20
标签:

摘要:

最近的研究强调,真菌菌丝残体是土壤C和N输入和储存的重要组成部分。因此,识别控制真菌残体分解的微生物群落和生态因子将为了解真菌有机质如何影响森林土壤C和养分循环提供关键的见解。我们调查了真菌残体上定殖的微生物群落的长期动态过程,利用不同网孔大小的培养袋以控制植物根系和微生物分解者的参与。在30个月的培养过程中,残体相关的细菌和真菌群落在分类和功能上都很丰富,寡营养细菌和根相关真菌(即ECM真菌、ERM真菌和内生真菌)的丰度在网袋分解后期增加。残体相关的β-葡萄糖苷酶活性在6个月时最高,而亮氨酸氨基肽酶在18个月时最高。基于渐近分解模型,根的存在与真菌残体最初更快的分解速率有关,但导致在稍后的采样时间内真菌残体保留的更多。这些结果表明,微生物群落组成和酶活性在分解真菌残体过程中保持动态变化,根系及其共生真菌导致微生物残体周转随着时间的推移而减慢。


关键词:

细菌,北方森林土壤,C循环,ECM真菌,ERM真菌,真菌残体,真菌,菌丝周转。


研究背景:

死亡的真菌菌丝(以下简称真菌残体)在土壤C、N循环中发挥着重要的作用。但迄今为止的大多数研究集中于短期的真菌残体质量损失以及与残体分解相关的早期定殖的微生物群落。考虑到真菌残体较难降解部分的长期存在,微生物分解者在何种程度上仍然活跃地占据这些部分尚不清楚。此外,很少有研究测量了与真菌残体分解相关的酶,这与基于序列的鉴定可以帮助确定不同微生物分解者群体的目标资源。最后,根系可以加速或延缓土壤有机质的分解。并且根系的存在也会影响各种与根系相关的微生物丰度,包括ECM真菌。然而目前尚不清楚随着时间的推移与根系相关的ECM真菌是如何影响真菌残体的。


研究内容:

基于此,本研究对含有真菌残体的网袋首先进行了高通量测序来识别6、18和30个月土壤培养后与真菌残体分解相关的细菌和真菌群落。其次,在同一采样时间内,定量了3种针对不同的C和N组分的酶(β-葡萄糖苷酶、亮氨酸氨基肽酶和N-乙酰葡萄糖苷酶)的活性。第三,重新分析了真菌残体质量损失率,以评估早期和后期取样时根系存在的潜在不同影响。


研究方法:

本研究在赫尔辛基大学Hyytiälä林业野外观测站和SMEAR II生态-大气关系测量站进行。将原位培养的Chondrostereum purpureum残体放入3种不同孔径(1、50、1000μm)的尼龙网袋中,再将网袋随机埋入有机层和矿质层之间,并于分解的第6、18和30个月时收获。


研究结果:

1. 与真菌残体相关的细菌和真菌群落

01


细菌OTU丰富度随时间增加相对稳定,而真菌群落的OTU丰富度随时间增加而增加(图1)。此外,细菌和真菌群落的OTU丰富度随着网孔的减小而显著降低。

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图1 不同培养时间或网孔大小的细菌和真菌的OTU丰富度;不同小写字母表示有统计学意义(p ≤0.05)


NMDS分析显示,与1000μm网袋上的定殖的细菌群落相比,50μm和1μm的细菌群落更为相似(图2a)。培养时间是控制细菌群落结构的主要因素,解释了20.3%的OTU组成变化(图2b)。细菌群落主要由Acidobacteria、Actinobacteria、Alphaproteobacteria、Gammaproteobacteria、Bacilli、Bacteroidia和Verrucomicrobiae等组成(图2c)。Alphaproteobacteria、Gammaproteobacteria、Bacteroidia是培养6个月后最丰富的纲,Acidobacteriia、Actinobacteria、Bacilli和 Verrucomicrobiae培养30个月后逐渐成为占优势的纲。另外,50 μm和1 μm的真菌群落也更为相似(图2d)。培养时间和孔径显著影响真菌群落组成,解释了OTU组成变化的5.7%和4.5%(图2e)。在所有采样时间点,真菌群落以Mucoromycetess纲(高达75%)为主,其次是Agaricomycetes、Eurotiomycetes、Leotiomycetes纲(图2f)。在1000 μm菌袋中,Mucoromycetess的相对丰度随时间的延长而减少,而在50 μm和1 μm菌袋中,Mucoromycetess的相对丰度在整个实验过程中仍占主导地位

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图2 不同培养时间和网孔径大小的OTU组成的(a)细菌和(d)真菌群落的非度量多维尺度(NMDS)分析。不同培养时间和网孔径大小的基于排列多变量方差分析(PERMANOVA)解释(b)细菌和(e)真菌OTU组成的方差,培养时间和网孔大小单独处理。不同培养时间和网孔径大小的(c)细菌和(f)真菌纲相对丰度。


在三个采样时间,定殖的细菌派系总体以富营养细菌为主(图3a)。然而,培养时间显著影响富营养细菌和寡营养细菌相对丰度(表S4),前者随着时间的推移从60%下降到20%,后者从6个月时的2.5%上升到30个月时的8%(图3a)。另外,定殖的真菌派系中腐生菌占据主导地位(图3b)。腐生真菌的相对丰度随时间增加而减少,ECM真菌和ERM真菌的相对丰度随时间增加而显著增加。腐生真菌的相对丰富度随孔径减小而增加,ECM真菌、ERM真菌和内生真菌的相对丰富度随孔径减小而减少(图3b)。

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图3 不同培养时间或网孔大小的(a)细菌和(b)真菌功能群的相对丰度;不同小写字母表示有统计学意义(p ≤0.05)


大部分细菌属受到培养时间的显著影响(图4)。Chitinophaga、Dokdonella、Ferruginibacter、Mucilaginibacter和Pedobacter在培养6个月后是最丰富的细菌属,然后在整个实验过程中下降。在收获6个月时,Bacillus、Cohnella、Granulicella、Mycobacterium和Paenibacillus等细菌属含量不高,但在18和30个月时显著增加。与50和1 μm孔径处理相比,1000 μm孔径处理中Acidothermus、Bradyrhizobium、Burkholderia、Cohnella和Mycobacterium属显著富集。Cohnella、Labilithrix、Paenibacillus和Rhodococcus相对丰度与真菌残体残留量呈显著负相关。Acidipila、Dyella、Flavobacterium、Streptacidiphilus和Streptomyces的相对丰度与真菌残体残留量呈显著正相关。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图4 不同培养时间或网孔大小的细菌属的相对丰度。其中细菌属较为丰富,占总相对丰度的80%。圆的大小与每个细菌属的相对丰度有关。采用双因素方差分析评价了培养时间和网孔大小对各细菌属相对丰度的影响,p值用红色表示(T =时间,M =网孔大小,I =时间×网孔大小);ns表示结果不显著。不同采样时间细菌属相对丰度与真菌残体质量之间的Pearson相关性。只显示了显著的相关性(p ≤0.05)



在整个试验过程中,Mucor是最丰富的真菌属,但在后期显著减少(图5)。在18和30个月的采样次数中,1000 μm真菌袋中的Mucor相对丰度也显著低于50和1 μm真菌袋。第二丰富的Penicillium属在50 μm真菌袋中的含量显著高于1000 μm和1 μm真菌袋。此外,Geomyces、Inocybe、Meliniomyces和Penicillium在6个月的采样时间内与真菌残体质量残留量呈显著正相关,而Amanita, Mortierella, 、Piloderma和Umbelopsis 在后期采样时间内与真菌残体质量残留量呈正相关。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

5 不同培养时间或网孔大小的真菌属的相对丰度。其中真菌属较为丰富,占总相对丰度的80%。圆的大小与每个真菌属的相对丰度有关。采用双因素方差分析评价了培养时间和网孔大小对各真菌属相对丰度的影响,p值用红色表示(T =时间,M =网孔大小,I =时间×网孔大小);ns表示结果不显著。不同采样时间真菌属相对丰度与真菌残体质量之间的Pearson相关性。只显示了显著的相关性(p ≤0.05)




2. 与真菌残体相关的酶活性

02

β-葡萄糖苷酶活性受培养时间显著影响, 6个月时高于18个月或30个月时的活性(图6)。亮氨酸氨基肽酶活性也受培养时间的显著影响,18个月后达到最大值。相比之下,乙酰氨基葡萄糖苷酶活性不受培养时间的显著影响。三种酶活性均不受孔径处理的显著影响(图6)。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图6 不同培养时间或网孔大小的酶活性;不同小写字母表示有统计学意义(p ≤0.05)




3. 真菌残体的质量损失

03

渐近衰减模型显示真菌残体的质量损失取决于孔径大小和时间。与1000 μm菌袋(k = 5.65)相比,50 μm菌袋和1 μm菌袋的衰变常数(k = 0.43和k = 0.50)相对较低。1000 μm菌袋的渐近值是50 μm或1 μm菌袋的1.5倍,这与后期质量损失相关。在第二次和第三次采收中,1000 μm真菌袋中残留的质量稳定在~12%,而50 μm和1 μm真菌袋中残留的质量稳定在~7%(图S4,表S6)。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图7 渐近非线性指数衰减模型适用于各种网格尺寸的处理



原名:Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest

译名:北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

期刊:Molecular Ecology

IF:5.163

发表时间:2021.01.26

第一作者: François Maillard

通讯作者:François Maillard

合作作者:Peter G. Kennedy, Bartosz Adamczyk, Jussi Heinonsalo, Marc Buée

主要单位:

INRAE, UMR IAM, Université de Lorraine, Nancy, France

Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA Natural Resources Institute Finland, Helsinki, Finland

Department of Microbiology, University of Helsinki, Helsinki, Finland

Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland

Finnish Meteorological Institute, Helsinki, Finland



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 06 - 17
    文献解读原 名:Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon译 名:盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量期 刊:Science BulletinIF:18.9发表日期:2024.5.18第一作者:Lin Chen01摘要盐碱地是应对全球气候变化和保障粮食安全的重要耕地储备资源,部分原因是它可以储存大量的碳(C)。目前尚不清楚盐碱土地复垦(将盐碱土地转化为耕地)如何影响土壤碳储存。本研究结果表明,与盐碱地相比,盐碱地复垦显著增加了植物来源的碳积累和植物来源的碳与微生物来源的碳比率,导致植物源碳成为SOC储量的主要贡献者,POC封存和MAOC封存分别与盐碱复垦引起的植物和微生物来源的碳积累密切相关,即盐碱地复垦通过优先促进植物来源的碳积累来增加表层土壤中的碳储存量。02引言土壤盐碱化使全球土壤(0-30cm)SOC储量减少了3.47t ha−1。利用土壤修复技术可以有效地逆转这一现象。在农业生态系统中,微生物残体(特别是真菌残体)优先聚集土壤的POC部分。植物和微生物源碳与POC和MAOC含量之间的关系以及植物和微生物来源的碳对盐碱条件下SOC储存的贡献知之甚少。两个公认的生物标志物(木质素酚和氨基糖)已被广泛用于估计植物衍生木质素残体和微生物残体对SOC库的贡献。因此,我们分别使用木质素酚和氨基糖作为植物和微生物残体碳的表征。本研究的目的是(i)量化盐碱土地复垦对表层土壤碳储量的影响,确定影响碳储量的关键因素;(ii)评估植物和微生物来源的碳与POC和MAOC池之间的关系,以及植物和微生物来源的碳对中国主要盐碱区SOC储存的贡献。盐碱地复垦对中国主要盐碱区...
  • 点击次数: 0
    2024 - 05 - 27
  • 点击次数: 0
    2024 - 05 - 20
    文献解读原名:Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate译名:通过13C标记光合产物的追踪,禁牧通过根源碳的微生物残体增加了土壤有机碳期刊:Biology and Fertility of SoilsIF:6.5/Q1发表日期:5 March 2024第一作者:瞿晴01摘要背景:草原储存了大量的碳,然而,禁牧后土壤碳固存的潜在机制尚不清楚。本研究旨在阐明温带草原在长期禁牧后(~40年) ,植物和微生物残体对土壤有机碳(SOC)贡献的驱动因素。方法:现场进行了13C-CO2原位标记实验,并结合生物标记物追踪植物-土壤系统中的13C,以评估植物对土壤的碳输入。结果:长期禁牧提高了植物和土壤碳库包括地上生物量、地下生物量、微生物生物量和残体;且禁牧草地新输入光合碳在植物和土壤系统中的分配量高于放牧草地,但在土壤CO2中的分配量低于放牧草地。新输入的光合碳在土壤和微生物量中的分配量与根系中光合碳的分配量呈正相关关系。与放牧相比,禁牧提高了草地土壤有机碳含量约2倍,但木质素酚对土壤有机碳的贡献甚微(0.8%),而真菌残体碳的积累是导致土壤有机碳含量增加的主要因素。结论:受矿物颗粒保护的微生物残体碳是导致禁牧草地土壤有机碳含量高于放牧草地的主要因素。总之,禁牧不仅增加了地上生物量,也增加根系生物量和根际沉积,导致微生物生物量和残体的形成,在矿物基质的保护作用在土壤中长期稳定存在。禁牧条件下,微生物残体特别是真菌残体对SOC的积累贡献大于木质素酚。02主要结果图1 放牧和禁牧样地地植物-土壤-微生物系统的碳储量。(a)地上部分碳库;(b)根碳库;(c)土壤有机碳库(0−25c...
  • 点击次数: 0
    2024 - 05 - 17
    文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-气候反馈水平的主要不确定性来源。生态系统和生物地球化学模型假设Q10为常数,尽管人们普遍认为Q10随温度等环境条件而变化。然而,决定Q10在大空间尺度上变异性的非生物和生物因素的相对贡献在很大程度上仍然未知。解释Q10模式的主要驱动因素通常考虑土壤微生物群、基质数量、矿物保护、生化抗性和环境因素的影响。首先,土壤微生物组(即微生物生物量、丰富度和群落组成)是有机物分解的最终参与者,并随着气候变暖调...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
微信公众号
Q  Q : 2105984845
地址:中国四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务