028-8525-3068
新闻动态 News
News 行业新闻

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

日期: 2021-08-20
标签:

摘要:

最近的研究强调,真菌菌丝残体是土壤C和N输入和储存的重要组成部分。因此,识别控制真菌残体分解的微生物群落和生态因子将为了解真菌有机质如何影响森林土壤C和养分循环提供关键的见解。我们调查了真菌残体上定殖的微生物群落的长期动态过程,利用不同网孔大小的培养袋以控制植物根系和微生物分解者的参与。在30个月的培养过程中,残体相关的细菌和真菌群落在分类和功能上都很丰富,寡营养细菌和根相关真菌(即ECM真菌、ERM真菌和内生真菌)的丰度在网袋分解后期增加。残体相关的β-葡萄糖苷酶活性在6个月时最高,而亮氨酸氨基肽酶在18个月时最高。基于渐近分解模型,根的存在与真菌残体最初更快的分解速率有关,但导致在稍后的采样时间内真菌残体保留的更多。这些结果表明,微生物群落组成和酶活性在分解真菌残体过程中保持动态变化,根系及其共生真菌导致微生物残体周转随着时间的推移而减慢。


关键词:

细菌,北方森林土壤,C循环,ECM真菌,ERM真菌,真菌残体,真菌,菌丝周转。


研究背景:

死亡的真菌菌丝(以下简称真菌残体)在土壤C、N循环中发挥着重要的作用。但迄今为止的大多数研究集中于短期的真菌残体质量损失以及与残体分解相关的早期定殖的微生物群落。考虑到真菌残体较难降解部分的长期存在,微生物分解者在何种程度上仍然活跃地占据这些部分尚不清楚。此外,很少有研究测量了与真菌残体分解相关的酶,这与基于序列的鉴定可以帮助确定不同微生物分解者群体的目标资源。最后,根系可以加速或延缓土壤有机质的分解。并且根系的存在也会影响各种与根系相关的微生物丰度,包括ECM真菌。然而目前尚不清楚随着时间的推移与根系相关的ECM真菌是如何影响真菌残体的。


研究内容:

基于此,本研究对含有真菌残体的网袋首先进行了高通量测序来识别6、18和30个月土壤培养后与真菌残体分解相关的细菌和真菌群落。其次,在同一采样时间内,定量了3种针对不同的C和N组分的酶(β-葡萄糖苷酶、亮氨酸氨基肽酶和N-乙酰葡萄糖苷酶)的活性。第三,重新分析了真菌残体质量损失率,以评估早期和后期取样时根系存在的潜在不同影响。


研究方法:

本研究在赫尔辛基大学Hyytiälä林业野外观测站和SMEAR II生态-大气关系测量站进行。将原位培养的Chondrostereum purpureum残体放入3种不同孔径(1、50、1000μm)的尼龙网袋中,再将网袋随机埋入有机层和矿质层之间,并于分解的第6、18和30个月时收获。


研究结果:

1. 与真菌残体相关的细菌和真菌群落

01


细菌OTU丰富度随时间增加相对稳定,而真菌群落的OTU丰富度随时间增加而增加(图1)。此外,细菌和真菌群落的OTU丰富度随着网孔的减小而显著降低。

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图1 不同培养时间或网孔大小的细菌和真菌的OTU丰富度;不同小写字母表示有统计学意义(p ≤0.05)


NMDS分析显示,与1000μm网袋上的定殖的细菌群落相比,50μm和1μm的细菌群落更为相似(图2a)。培养时间是控制细菌群落结构的主要因素,解释了20.3%的OTU组成变化(图2b)。细菌群落主要由Acidobacteria、Actinobacteria、Alphaproteobacteria、Gammaproteobacteria、Bacilli、Bacteroidia和Verrucomicrobiae等组成(图2c)。Alphaproteobacteria、Gammaproteobacteria、Bacteroidia是培养6个月后最丰富的纲,Acidobacteriia、Actinobacteria、Bacilli和 Verrucomicrobiae培养30个月后逐渐成为占优势的纲。另外,50 μm和1 μm的真菌群落也更为相似(图2d)。培养时间和孔径显著影响真菌群落组成,解释了OTU组成变化的5.7%和4.5%(图2e)。在所有采样时间点,真菌群落以Mucoromycetess纲(高达75%)为主,其次是Agaricomycetes、Eurotiomycetes、Leotiomycetes纲(图2f)。在1000 μm菌袋中,Mucoromycetess的相对丰度随时间的延长而减少,而在50 μm和1 μm菌袋中,Mucoromycetess的相对丰度在整个实验过程中仍占主导地位

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图2 不同培养时间和网孔径大小的OTU组成的(a)细菌和(d)真菌群落的非度量多维尺度(NMDS)分析。不同培养时间和网孔径大小的基于排列多变量方差分析(PERMANOVA)解释(b)细菌和(e)真菌OTU组成的方差,培养时间和网孔大小单独处理。不同培养时间和网孔径大小的(c)细菌和(f)真菌纲相对丰度。


在三个采样时间,定殖的细菌派系总体以富营养细菌为主(图3a)。然而,培养时间显著影响富营养细菌和寡营养细菌相对丰度(表S4),前者随着时间的推移从60%下降到20%,后者从6个月时的2.5%上升到30个月时的8%(图3a)。另外,定殖的真菌派系中腐生菌占据主导地位(图3b)。腐生真菌的相对丰度随时间增加而减少,ECM真菌和ERM真菌的相对丰度随时间增加而显著增加。腐生真菌的相对丰富度随孔径减小而增加,ECM真菌、ERM真菌和内生真菌的相对丰富度随孔径减小而减少(图3b)。

北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图3 不同培养时间或网孔大小的(a)细菌和(b)真菌功能群的相对丰度;不同小写字母表示有统计学意义(p ≤0.05)


大部分细菌属受到培养时间的显著影响(图4)。Chitinophaga、Dokdonella、Ferruginibacter、Mucilaginibacter和Pedobacter在培养6个月后是最丰富的细菌属,然后在整个实验过程中下降。在收获6个月时,Bacillus、Cohnella、Granulicella、Mycobacterium和Paenibacillus等细菌属含量不高,但在18和30个月时显著增加。与50和1 μm孔径处理相比,1000 μm孔径处理中Acidothermus、Bradyrhizobium、Burkholderia、Cohnella和Mycobacterium属显著富集。Cohnella、Labilithrix、Paenibacillus和Rhodococcus相对丰度与真菌残体残留量呈显著负相关。Acidipila、Dyella、Flavobacterium、Streptacidiphilus和Streptomyces的相对丰度与真菌残体残留量呈显著正相关。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图4 不同培养时间或网孔大小的细菌属的相对丰度。其中细菌属较为丰富,占总相对丰度的80%。圆的大小与每个细菌属的相对丰度有关。采用双因素方差分析评价了培养时间和网孔大小对各细菌属相对丰度的影响,p值用红色表示(T =时间,M =网孔大小,I =时间×网孔大小);ns表示结果不显著。不同采样时间细菌属相对丰度与真菌残体质量之间的Pearson相关性。只显示了显著的相关性(p ≤0.05)



在整个试验过程中,Mucor是最丰富的真菌属,但在后期显著减少(图5)。在18和30个月的采样次数中,1000 μm真菌袋中的Mucor相对丰度也显著低于50和1 μm真菌袋。第二丰富的Penicillium属在50 μm真菌袋中的含量显著高于1000 μm和1 μm真菌袋。此外,Geomyces、Inocybe、Meliniomyces和Penicillium在6个月的采样时间内与真菌残体质量残留量呈显著正相关,而Amanita, Mortierella, 、Piloderma和Umbelopsis 在后期采样时间内与真菌残体质量残留量呈正相关。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

5 不同培养时间或网孔大小的真菌属的相对丰度。其中真菌属较为丰富,占总相对丰度的80%。圆的大小与每个真菌属的相对丰度有关。采用双因素方差分析评价了培养时间和网孔大小对各真菌属相对丰度的影响,p值用红色表示(T =时间,M =网孔大小,I =时间×网孔大小);ns表示结果不显著。不同采样时间真菌属相对丰度与真菌残体质量之间的Pearson相关性。只显示了显著的相关性(p ≤0.05)




2. 与真菌残体相关的酶活性

02

β-葡萄糖苷酶活性受培养时间显著影响, 6个月时高于18个月或30个月时的活性(图6)。亮氨酸氨基肽酶活性也受培养时间的显著影响,18个月后达到最大值。相比之下,乙酰氨基葡萄糖苷酶活性不受培养时间的显著影响。三种酶活性均不受孔径处理的显著影响(图6)。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图6 不同培养时间或网孔大小的酶活性;不同小写字母表示有统计学意义(p ≤0.05)




3. 真菌残体的质量损失

03

渐近衰减模型显示真菌残体的质量损失取决于孔径大小和时间。与1000 μm菌袋(k = 5.65)相比,50 μm菌袋和1 μm菌袋的衰变常数(k = 0.43和k = 0.50)相对较低。1000 μm菌袋的渐近值是50 μm或1 μm菌袋的1.5倍,这与后期质量损失相关。在第二次和第三次采收中,1000 μm真菌袋中残留的质量稳定在~12%,而50 μm和1 μm真菌袋中残留的质量稳定在~7%(图S4,表S6)。


北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

图7 渐近非线性指数衰减模型适用于各种网格尺寸的处理



原名:Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest

译名:北方森林中根系的存在改变了真菌残体和相关微生物群落的长期分解动态

期刊:Molecular Ecology

IF:5.163

发表时间:2021.01.26

第一作者: François Maillard

通讯作者:François Maillard

合作作者:Peter G. Kennedy, Bartosz Adamczyk, Jussi Heinonsalo, Marc Buée

主要单位:

INRAE, UMR IAM, Université de Lorraine, Nancy, France

Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA Natural Resources Institute Finland, Helsinki, Finland

Department of Microbiology, University of Helsinki, Helsinki, Finland

Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland

Finnish Meteorological Institute, Helsinki, Finland



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
  • 点击次数: 0
    2025 - 03 - 05
    文献解读原名:Multitrophic interactions support belowground carbon sequestrationthrough microbial necromass accumulation in dryland biocrusts译名:多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存期刊:Soil Biology and BiochemistryIF:9.8发表日期:2025年1月第一作者:石佳 中国农业大学 博士研究生通讯作者:王祥 中国农业大学 教授1背景土壤有机碳(SOC)是全球最大的陆地有机碳库,估计有1500-2400 Pg。SOC在调节全球碳储量和通量方面发挥着重要作用。土壤微生物被视为土壤碳动态的主要调节因子。一般来说,微生物通过分解减少SOC库存,同时通过形成微生物生物量和稳定坏死残留物来促进稳定的碳库。最近对土壤生物标志物的全球评估表明,微生物尸体占SOC库的50%,而活微生物生物量不到5%。因此,需要深入了解控制微生物生命和死亡过程的机制,以揭示全球碳循环的复杂性,并制定有效的土壤管理策略。如生物物理特征、细胞化学组成和生活史等,影响土壤有机物循环与微生物残体碳(MNC)积累。碳利用效率(CUE)衡量转化为微生物生物量的有机碳占比,反映土壤有机碳(SOC)平衡,与 MNC、SOC 的关系存争议。竞争、互利共生和捕食等生物相互作用,影响微生物残体形成与性质。土壤微生物是食物网基础,种间竞争和高营养级捕食影响其存亡与生物量向残体的转化。营养级内和级间的相互作用,会影响 MNC 积累与 SOC 。2提出假设(1)多个营养级类群会介导土壤微生物残体碳的积累。(2)营养级内的资源竞争和跨营养级的掠食性捕食,都可能导致土壤碳更高效地分解,以及微生物残体积累减少。3材料与方法(1)研究区域位于中国西北部陕西省神木市...
  • 点击次数: 0
    2025 - 03 - 01
    栢晖生物成立于2014年,致力于为生态、农业、林业等科学研究领域提供专业的检验检测服务。公司总部位于成都市成华区四川检验检测创新科技园,实验室规模近3000平,拥有成熟、完善的实验室管理体系。01招聘岗位概览01技术支撑(3人,6-15k)岗位要求:1.生态学、农学、土壤学、林学、草学、环境工程专业硕士,接受应届生;2.有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3.熟悉相关实验室仪器设备(如:TOC仪,元素分析仪,液相等),了解并掌握相关实验数据的分析能力;4.性格外向,沟通能力强,能适应偶尔出差;岗位职责:1.项目前期对接(回复技术咨询,实验方案确认等);2.监督项目进度(与实验室对接检测要求,监督实验进度、确认实验数据);3.项目后期处理(追踪数据发放,协助处理项目结算等相关问题)。工作地点:成都02品牌经理(9人,6-15k)岗位要求:1、生态学、农学、土壤学、林学、草学、环境工程专业本科及以上学历,23及24届研究生优先,优秀25届亦可;2、有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3、性格外向,沟通能力强,能适应出差;4、工作踏实,自律性和执行能力强,具有积极进取的精神和不断学习的态度;5、有第三方检测机构相关经验者优先考虑。岗位职责:1、负责所在区域高校和企业市场的开拓推广工作,进入高校开展线下讲座、企业宣讲等活动;2、定期拜访高校和企业相关重点客,通过邮件、直播讲座、电话及微信等与需求客户维持良好的检测合作关系;3、主动学习各种专业知识,关注行业动态及政策;4、负责完成上级领导布置的业绩目标和工作目标;工作地点(驻点城市):北京 广州 南京 杭州 昆明 西安 长沙 沈阳 福州03项目管理(3人,...
  • 点击次数: 0
    2025 - 02 - 13
    木质素酚的来源木质素是土壤有机碳的重要组成部分,具有芳香单元的三维立体结构, 化学稳定性高,未经分离或化学转化,现有的分析技术很难对其进行直接定量分析。分子标志物的方法是目前用于测定土壤木质素含量和组成较为普遍的方法,即用木质素酚类化合物的含量,对木质素的含量及有机质来源进行指示。目前常用的处理方法是碱性氧化铜裂解出小分子单体,通过LC-DAD、LC-MS、GC-FID和GCMS测定。目标物质分类及应用意义香草基酚系列(V):香草酸、香草醛、香草乙酮丁香基酚系列(S):丁香酸、丁香醛、乙酰丁香酮肉桂基酚系列(C):对-香豆酸、阿魏酸对羟基酚系列(P):对羟基苯甲酸、对羟基苯甲醛、对羟基苯乙酮样品处理方法方法原理:土壤样品中木质素通过碱性氧化铜在高温下水解成单环酚盐类,调节pH=1,用液液萃取提取出酚类单体,经双(三甲基硅烷基)三氟乙酰胺(BSTFA)衍生,用GCMS分离检测,以保留时间和质谱特征离子定性,内标法定量。操作步骤:称0.5-1.0g(精确至0.0001g)样品于反应釜,加1.0g氧化铜和0.1g硫酸亚铁铵,混匀。加10mL氢氧化钠(2mol/L),氮气置换釜内空气15min,170 ℃ 水解3h,加40ug内标,转移,离心,固液分离,10mL超纯水分两次清洗沉淀,合并上清液。1+1盐酸调pH=1,暗处放置1h,离心,固液分离,0.1molL盐酸清洗沉淀两次,合并上清液。提取液加2g氯化钠,混匀,用30mL乙酸乙酯分3次萃取,收集合并有机相,过无水硫酸钠除水。40 ℃氮吹至干燥,加100uL吡啶和400uLBSTFA,70℃下反应3h,上机测定。校正曲线:取适量木质素酚标准使用液,加入到预先装有1mL乙酸乙酯的衍生瓶中,加40ug内标,配制成系列标准溶液,40 ℃下氮气吹干,衍生。数据计算及分析定性方法:通过样品中目标物与标准系列中目标物的保留时间、质谱图,碎片离...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务