028-8525-3068
新闻动态 News
News 行业新闻

自然陆地生态系统地上植物生产力普遍受到磷限制

日期: 2021-08-20
标签:

标题:Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems

 

论文id:10.1038/s41467-020-14492-w

原名:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

译名:自然陆地生态系统地上植物生产力普遍受到磷限制

期刊:Nature Communications

IF:12.212

发表时间:2020.01.30

第一作者:侯恩庆

通讯作者:侯恩庆,温达志

主要单位:中国科学院华南植物源

   


摘要:

热带地区地上植物生产普遍被认为受到P限制,而其他地区P限制则很少发生。本研究发现磷限制可能是更加广泛的存在及其强度可能比以往预测的更强。Meta分析结果显示在652个施磷野外试验中,近半数研究(46.2%)表明P显著地限制了植物地上部分生产力。在全球范围内,P添加使陆地生态系统地上植物产量增加了34.9%,比之前预测的增加了7.0 ~ 15.9%。相比之下,在农田中,添加P仅使地上植物产量增加了13.9%,这可能是由于历史施肥所致。不同气候带和地区对磷的限制程度也不同,并受气候、生态系统特性和施肥制度的影响。除证实热带地区普遍存在P限制外,我们的研究还表明其他地区也通常存在磷限制,表明了以往的研究低估了改变磷供应对陆地生态系统地上植物生产的重要性。


研究背景:

陆地地上植物生产力受到养分限制已被广泛承认。在陆地生态系统中,氮被认为是最重要的限制养分,而P尽管也是重要的限制养分,但其主要发生在风化作用强烈的热带低海拔地区。然而目前更多的研究发现P限制可以发生在苔原地区、温带风化作用强烈地区,这些发现对上述观点提出了挑战。目前为止,对于P在怎样的条件下限制陆地地上植物生产的认识人不清楚。因此,在耦合模型相互比较项目(CMIP5)第五阶段的数十个模型中,没有一个代表陆地磷生物地球化学,这导致了21世纪陆地碳汇强度的估算存在很大的不确定性。


本文报道了陆地生态系统地上植物产量的分布、大小和驱动因素。为此,我们使用了一个收录了从1955年至2017年发表的285篇论文汇编而成的652个P添加原位实验数据的全球数据库。该数据库涵盖了所有陆地生态系统的主要类型,包括自然陆地生态系统(436个森林、草原、苔原或湿地实验数据)和农田生态系统(216个)。本研究采用的自然陆地生态系统P添加实验数据数量比之前的整合分析多3.8-8.8倍。此外,由我们所采用的研究报道中有41.7%使2007年后发表的数据。收集到的数据分布在除南极洲以外的所有大洲,年均降雨量(MAP)为80-5302mm/y,年均温(MAT)为-12.1℃-27.5℃。与以前的数据库相比,这个最新的数据集能更好地捕捉了地球上不同的陆地栖息地,从而更清楚地了解磷供应在上述地面植物生产中的作用。


为了探究P限制的全局分布,我们首先估计了P限制的一个阈值,即一个临界P效应大小,该临界效应量与P = 0.05的临界z分数相对应。然后我们绘制了P限制显著和不显著情况的全球分布。我们使用生态学研究中常用的整合分析方法,量化了全球范围内以及不同生态系统之间P限制的大小。最后,我们探讨了气候、生态系统特性和施肥制度的影响,以及它们在预测磷效应大小方面的相对重要性。总的来说,在陆地生态系统地表植物生产的磷限制范围和程度比以往研究所提出的要更广泛、更强。


主要结果:

01

P限制的全球分布

地上植物生产力P限制在全球范围内广泛存在:从热带地区延森到北极地区(54.8ºS-76.5ºN)。除去尚未有研究的南极洲之外,所有已有研究的大陆板块均表现出一定程度地上生物量受P限制(图 1-3)。从全球尺度看,301个数据 (占总实验数的46.2%;45.0%的自然陆地生态系统实验;48.6%的农田试验)表明地上植物生产力显著受磷限制 (表1)。这些发现为陆地生态系统中地上植物生产受到磷限制是一个世界性的现象提供了有力的证据。以往研究认为P限制主要发生在热带地区是取决于其风化土壤,高植物N:P以及高P利用效率、低土壤P浓度。陆地地上植物生产中磷限制在世界范围的出现可能是由自养生物所共享的生化机制引起,该机制对P和N的需求可能使植物生长受到P和N的限制。

自然陆地生态系统地上植物生产力普遍受到磷限制


02

P限制程度大小

在自然生态系统中,P添加使地上生产力提高了34.9%,农田仅提高13.9%。施氮效应的地上生产力的影响幅度随着磷添加量的增加和实验时间持续而增长(图 3;表 1)。本研究中北美的P效应大小(36.9%)与全球平均水平接近,但欧洲的P效应大小(21.7%)远小于全球平均水平和澳大利亚的平均水平(50.6%)、亚洲的平均水平(40.4%)和南美洲的平均水平(37.7%)(图 3)。在农田生态系统中,P效应对地上植物生产力的影响要小得多(表1),这可能与农田土壤具有更高的P有效性以及持续的P肥施用历史有关。


自然陆地生态系统地上植物生产力普遍受到磷限制

自然陆地生态系统地上植物生产力普遍受到磷限制

自然陆地生态系统地上植物生产力普遍受到磷限制


03

P限制测度的预测因子

磷效应的大小是由多个因素而不是单一因素控制的,气候、施肥制度、土壤和植物特性的解释度大概为9.1%–40.0%(图 4)。在热带和亚热带自然生态系统中,由于高温和降水驱动植物对磷的需求,以及土壤可提取磷浓度低限制了土壤磷供应,导致了磷的限制。相比之下,温带和(亚)北极自然生态系统中磷限制的出现可能与土壤有机质含量和pH值普遍较高有关。高有机质含量的土壤通过封闭磷的有机形态和提高微生物对磷的固定能力,降低了土壤中磷的有效性。土壤pH过高会降低土壤对磷的吸附能力,从而提高植物对磷肥的利用效率(即增强磷肥效应)。此外,土壤有机质含量高和pH适中都能提高土壤中N、钾、钙等养分的有效性,这可能扩大了植物生长对磷添加的响应。


自然陆地生态系统地上植物生产力普遍受到磷限制


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务