028-8525-3068
新闻动态 News
News 行业新闻

自然陆地生态系统地上植物生产力普遍受到磷限制

日期: 2021-08-20
标签:

标题:Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems

 

论文id:10.1038/s41467-020-14492-w

原名:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

译名:自然陆地生态系统地上植物生产力普遍受到磷限制

期刊:Nature Communications

IF:12.212

发表时间:2020.01.30

第一作者:侯恩庆

通讯作者:侯恩庆,温达志

主要单位:中国科学院华南植物源

   


摘要:

热带地区地上植物生产普遍被认为受到P限制,而其他地区P限制则很少发生。本研究发现磷限制可能是更加广泛的存在及其强度可能比以往预测的更强。Meta分析结果显示在652个施磷野外试验中,近半数研究(46.2%)表明P显著地限制了植物地上部分生产力。在全球范围内,P添加使陆地生态系统地上植物产量增加了34.9%,比之前预测的增加了7.0 ~ 15.9%。相比之下,在农田中,添加P仅使地上植物产量增加了13.9%,这可能是由于历史施肥所致。不同气候带和地区对磷的限制程度也不同,并受气候、生态系统特性和施肥制度的影响。除证实热带地区普遍存在P限制外,我们的研究还表明其他地区也通常存在磷限制,表明了以往的研究低估了改变磷供应对陆地生态系统地上植物生产的重要性。


研究背景:

陆地地上植物生产力受到养分限制已被广泛承认。在陆地生态系统中,氮被认为是最重要的限制养分,而P尽管也是重要的限制养分,但其主要发生在风化作用强烈的热带低海拔地区。然而目前更多的研究发现P限制可以发生在苔原地区、温带风化作用强烈地区,这些发现对上述观点提出了挑战。目前为止,对于P在怎样的条件下限制陆地地上植物生产的认识人不清楚。因此,在耦合模型相互比较项目(CMIP5)第五阶段的数十个模型中,没有一个代表陆地磷生物地球化学,这导致了21世纪陆地碳汇强度的估算存在很大的不确定性。


本文报道了陆地生态系统地上植物产量的分布、大小和驱动因素。为此,我们使用了一个收录了从1955年至2017年发表的285篇论文汇编而成的652个P添加原位实验数据的全球数据库。该数据库涵盖了所有陆地生态系统的主要类型,包括自然陆地生态系统(436个森林、草原、苔原或湿地实验数据)和农田生态系统(216个)。本研究采用的自然陆地生态系统P添加实验数据数量比之前的整合分析多3.8-8.8倍。此外,由我们所采用的研究报道中有41.7%使2007年后发表的数据。收集到的数据分布在除南极洲以外的所有大洲,年均降雨量(MAP)为80-5302mm/y,年均温(MAT)为-12.1℃-27.5℃。与以前的数据库相比,这个最新的数据集能更好地捕捉了地球上不同的陆地栖息地,从而更清楚地了解磷供应在上述地面植物生产中的作用。


为了探究P限制的全局分布,我们首先估计了P限制的一个阈值,即一个临界P效应大小,该临界效应量与P = 0.05的临界z分数相对应。然后我们绘制了P限制显著和不显著情况的全球分布。我们使用生态学研究中常用的整合分析方法,量化了全球范围内以及不同生态系统之间P限制的大小。最后,我们探讨了气候、生态系统特性和施肥制度的影响,以及它们在预测磷效应大小方面的相对重要性。总的来说,在陆地生态系统地表植物生产的磷限制范围和程度比以往研究所提出的要更广泛、更强。


主要结果:

01

P限制的全球分布

地上植物生产力P限制在全球范围内广泛存在:从热带地区延森到北极地区(54.8ºS-76.5ºN)。除去尚未有研究的南极洲之外,所有已有研究的大陆板块均表现出一定程度地上生物量受P限制(图 1-3)。从全球尺度看,301个数据 (占总实验数的46.2%;45.0%的自然陆地生态系统实验;48.6%的农田试验)表明地上植物生产力显著受磷限制 (表1)。这些发现为陆地生态系统中地上植物生产受到磷限制是一个世界性的现象提供了有力的证据。以往研究认为P限制主要发生在热带地区是取决于其风化土壤,高植物N:P以及高P利用效率、低土壤P浓度。陆地地上植物生产中磷限制在世界范围的出现可能是由自养生物所共享的生化机制引起,该机制对P和N的需求可能使植物生长受到P和N的限制。

自然陆地生态系统地上植物生产力普遍受到磷限制


02

P限制程度大小

在自然生态系统中,P添加使地上生产力提高了34.9%,农田仅提高13.9%。施氮效应的地上生产力的影响幅度随着磷添加量的增加和实验时间持续而增长(图 3;表 1)。本研究中北美的P效应大小(36.9%)与全球平均水平接近,但欧洲的P效应大小(21.7%)远小于全球平均水平和澳大利亚的平均水平(50.6%)、亚洲的平均水平(40.4%)和南美洲的平均水平(37.7%)(图 3)。在农田生态系统中,P效应对地上植物生产力的影响要小得多(表1),这可能与农田土壤具有更高的P有效性以及持续的P肥施用历史有关。


自然陆地生态系统地上植物生产力普遍受到磷限制

自然陆地生态系统地上植物生产力普遍受到磷限制

自然陆地生态系统地上植物生产力普遍受到磷限制


03

P限制测度的预测因子

磷效应的大小是由多个因素而不是单一因素控制的,气候、施肥制度、土壤和植物特性的解释度大概为9.1%–40.0%(图 4)。在热带和亚热带自然生态系统中,由于高温和降水驱动植物对磷的需求,以及土壤可提取磷浓度低限制了土壤磷供应,导致了磷的限制。相比之下,温带和(亚)北极自然生态系统中磷限制的出现可能与土壤有机质含量和pH值普遍较高有关。高有机质含量的土壤通过封闭磷的有机形态和提高微生物对磷的固定能力,降低了土壤中磷的有效性。土壤pH过高会降低土壤对磷的吸附能力,从而提高植物对磷肥的利用效率(即增强磷肥效应)。此外,土壤有机质含量高和pH适中都能提高土壤中N、钾、钙等养分的有效性,这可能扩大了植物生长对磷添加的响应。


自然陆地生态系统地上植物生产力普遍受到磷限制


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 12
    1、试剂柠檬酸(AR) 柠檬酸三钠(AR) 无水甲醇(AR) 三氯甲烷(AR) 丙酮(AR) 甲苯(AR) 氢氧化钾(AR) 冰乙酸(AR) 正己烷(色谱纯) 十九烷酸甲酯(19:0)2、仪器气相色谱仪 冻干机 振荡仪 过柱装置 水浴锅 水浴氮吹仪 干式氮吹仪 高速离心机3、材料高速离心管 试管(100 mL、5 mL) 10 mL具塞试管 3 mL硅胶柱 玻璃滴管(可拆卸橡胶头)黑色塑料袋 玻璃量筒(1 mL、5 mL) 移液器(5 mL、1 mL、100 μL)4、试剂制备柠檬酸缓冲液:称取柠檬酸37.5 g,柠檬酸三钠44.1 g,溶于1 L超纯水中。提取液:依次加入柠檬酸缓冲液64 mL、无水甲醇160 mL、三氯甲烷80 mL,混合均匀。(现用现配,低温隔夜会析出盐)。甲醇甲苯混合溶液(1:1):15 mL无水甲醇、15 mL甲苯混合均匀(现用现配)。0.5 mol/L KOH溶液:称取28.05 g KOH,溶于1 L超纯水中。0.2 mol/L KOH甲醇溶液(2:3):取0.5 mol/L KOH溶液40 mL,溶入60 mL无水甲醇。1 mol/L冰乙酸溶液:取1.74 mL冰乙酸,溶入30 mL去离子水。5、样品处理土样冻干:称取土壤4.00 g(沙土8.00g)于高速离心管中,冰冻过夜,随后放入冻干机冻干。土壤含水率测定:称取土壤5.00 g于105 ℃下烘干3 h,随后冷却至室温,取出称重,计算含水率。6、测定6.1取出冻干土样,加入23ml提取液,避光振荡2h;6.2离心取上清液,重复步骤1 ,合并两个上清液;6.3依次加入三氯甲烷、柠檬酸缓冲液,避光过夜;6.4去除上清液,吹干三氯甲烷;6.5过柱;6.6吹干无水甲醇,用甲醇甲苯溶液、KOH甲醇溶液复溶,水浴,冷却至室温;6.7加入去离子水、冰乙酸...
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务