028-8525-3068
新闻动态 News
News 行业新闻

纳米尺度下土壤有机-有机和有机-矿物界面

日期: 2021-08-20
标签:

论文ID:

英文名:Organo–organic and organo–mineral interfaces in soil at the nanometer scale

译名:纳米尺度下土壤有机-有机和有机-矿物界面

期刊:Nature communications

IF: 14.919

发表时间:2020.11.30

第一作者:Angela R. Possinger

通讯作者:Johannes Lehmann

主要单位康奈尔大学

摘要:

土壤碳(C库的能力大小是由有机质和矿物相之间的相互作用介导的。然而,以往研究提出的有机质在团聚体有机矿物微结构内的层状积累尚未得到必要的纳米尺度空间分辨率的直接可视化证据。与以往研究报道的C官能团有序梯度不同,本研究识别了无序的微米大小的有机相。利用低温电子显微镜和电子能量损失光谱(EELS),我们比较了有机-有机界面和有机-矿物界面的差别。在有机界面上检测到个位纳米尺度的C形成层,显示烷基C和氮(N)富集(分别为47%)。在有机-矿物界面,N和氧化C的富集率分别为88%72 ~92%)和33%16 ~53%),显示出与有机-有机界面不同的稳定过程。然而,两种界面类型的N富集表明,富N残基促进更高的SOC吸存。

研究背景:

土壤有机碳(SOC)在全球碳循环中是一个关键的储层,这强调了理解土壤有机质(SOM)持久性的过程的重要性,从全球(如气候)到非常精细的尺度(如有机矿物表面相互作用)。提高对土壤有机质持久性驱动因素认识,包括土壤有机质保护机制,有助于更好地预测全球环境变化下土壤碳库的变化。SOM和矿物相的相互作用导致较低的微生物可达性和可分解性,这被认为是SOM稳定的主要过程。在土壤微团聚体和孔隙结构尺度上,土壤有机质、土壤物理结构和微生物分布的空间和化学异质性得到了较好的研究(图1a)。与微团聚尺度的异质性相比,微米级有机矿物组合的SOM成像和光谱显示SOM具有不同的组分构成,相对均匀、有序的层,且在更小的微米空间尺度上,OM组成与矿物表面的距离有明显的关系(图1b)。以前使用的成像和光谱技术的分辨率(30~50 nm)可能过于粗糙,无法分辨或描述嵌入有机矿物组合中的OM组分之间的界面(图1b)。在相关纳米尺度上,自然土壤样品有机-有机和有机-矿物界面化学组成还没有被直接可视化或描述。SOM与半结晶活性铁(Fe)和铝(Al)矿物表面之间的关联被认为有助于在广泛变化的土壤类型中长期保持和积累SOM。铁铝矿物有机复合体的形成与活性铁铝与氧化官能团和含氮生物分子的优先反应有关。然而,考虑到OM分布的亚微米空间尺度及其化学复杂性,在自然土壤的单个纳米(<10)尺度下,几乎没有明确的空间证据来理解这些假设的相互作用机制。本研究的目的是检验SOM与矿物的区域-结构相互作用模型,并识别有机-矿物界面上的官能团。

纳米尺度下土壤有机-有机和有机-矿物界面

 1. 有机-有机和有机-矿物相互作用的概念概述。


主要结果:

1. 有机-矿物界面:氮和氧化碳的富集



cryo-STEM-EELS光谱的288.1 eV处显示出C k-edge EELS的富集特征,表明氧化的羧基/羰基C与被取代或相邻的N2a, b)。相对于相邻OM较低能量C强度(284.0~286.5 eV),矿物-有机界面的平均氧化C强度增加了约33% N的相对富集特征表现为:与相邻OM区域相比,靠近Al矿物表面的C/N信号强度下降。结果表明了铝矿物与富氮氧化有机物之间的共位关系。

纳米尺度下土壤有机-有机和有机-矿物界面

2有机-矿物界面氮和氧化碳富集。 (a) 层状结构铝(Al)矿物的电子能量损失谱(EELS)数据收集的位点。横跨有机矿物界面的5个点(A-E)或相邻OM区域内的3EELS点扫描的平均碳(b)和氮(c) k-edge EELS(黑线)和单个光谱(灰线)


2.土壤有机质组成的空间异质性层次



利用纳米尺度空间分辨率,对高OM含量土壤团聚体的OM富集区进行了Cryo- STEM-EELS分析,揭示了不同OM组成的0.1-1μm特征 (图3)。不规则芳香C富集、低N和高O的有机质斑块镶嵌于烷基C富集、高N和低氧的有机基质中(图 3)。Ck边精细结构在特征和周围矩阵之间变化很大(图3cf),在观察到的斑块特征中,EELS精细结构以~285 eV的低能特征为主,这是与芳香结构相关的C=C键的跃迁有关。周围基质的EELS精细结构明显从~285 eV向更高能量转移,这可能于具有各种跃迁的烷基C-H键相关(图3 fg)。

纳米尺度下土壤有机-有机和有机-矿物界面

 3. 有机-有机界面的有机质组成特征。 a)低温聚焦离子束(cryo-FIB)下低放大倍数(5 kx)环状暗场(ADF)富有机质火山土壤薄片的STEM图像;(bEELS元素图显示了高n矩阵中低n特征的斑片状分布;(c)两种不同的碳(C)键合环境的EELS图显示,有机质(OM)的斑块状分布以微米大小为特征;(d)纳米尺度EELS两个OM斑块之间界面的C K-edge MCR分量图;(e)具有代表性的低N(上谱)和高N(下谱)区域的原始EELS数据;(f-g)对应于(cd)的归一化(最大值= 1)C kMCR分量图谱。

3.有机-有机界面:氮和烷基C的富集



在富芳烃斑块内,N含量随烷基相向界面方向增加(图 4)。N含量从低到高的变化与从芳香族C到烷基C的变化在空间上是分离的,N含量从界面开始进一步增加(图 4c)。相对于相邻的高氮相而言,界面处的C/N比降低了7%(图 4ab)。这表明芳香C相的含n组分可能优先参与界面相互作用,n的芳香族化合物具有较高的碳氧比和烷基成分(如细胞分裂素)可能促进有机相之间的相互作用芳香C(积分284.25~285.75 eV信号)或烷基C(积分286.0 287.5 eV信号)与C边缘强度的总积分比值显示,烷基C在有机-有机界面上直接富集(4%)(图4)。C/NC/O在界面上的总体变化趋势是OM形态在50 nm或更小的边界上的混合。总体而言,C EELS精细结构从芳香族(~285 eV)到烷基C (~287 eV)的转变比NO组成的逐渐变化更剧烈(图4c)。

我们的结果表明有机质的空间排列不仅可以在远离矿物表面的有序层中延伸,还可以在不规则形状的有机斑块的边界上延伸。此外,N与氧化C在矿物界面同时富集,而N与烷基C在有机-有机界面的富集则是相反的。上述结果为土壤OM空间分布层次的转变以及有机-有机界面相互作用促进OM积累的可能作用提供了证据。

纳米尺度下土壤有机-有机和有机-矿物界面

 4. 在有机-有机界面上的有机成分梯度。a)环形暗场(ADF)扫描透射电子显微镜(STEM)显示土壤薄片中有机相界面的细节。(b)有机-有机界面上C/N, C/O,芳香族/烷基C的归一化(最大= 1个单位)元素积分面积比值;(c)有机界面C/N和芳香/烷基比值的变化率;(d) 碳、氮、氧的k-edge EEL谱。



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
  • 点击次数: 0
    2024 - 11 - 21
    土壤酶活性,是指土壤酶催化物质转化的能力。常以单位时间内单位土壤的催化反应产物量或底物剩余量表示。土壤酶活性既包括已积累于土壤中的酶活性,也包括正在增殖的微生物向土壤释放的酶活性,它主要来源于土壤中的微生物,动物和植物。土壤酶活的分类:已知的酶根据酶促反应的类型可分为六大类。即水解酶、氧化还原酶、转移酶、裂合酶、异构酶和连接酶。1. 水解酶类: 酶促各种化合物中分子键的水解和裂解反应。主要包括蔗糖酶、淀粉酶、纤维素酶、脲酶、蛋白酶、磷酸酶等。2.氧化还原酶类: 指催化两分子间发生氧化还原作用的酶的总称。主要包括脱氢酶、过氧化氢酶、过氧化物酶、硝酸还原酶、亚硝酸还原酶等。3.转移酶类: 指能够催化除氢以外的各种化学官能团从一种底物转移到另一种底物的酶类,包括转氨酶、果聚糖蔗糖酶、转糖苷酶等。4.裂合酶类: 指催化由底物除去某个基团而残留双键的反应、或通过逆反应将某个基团加到双键上去的反应的酶的总称,主要包括谷氨酸脱羧酶、天门冬氨酸脱羧酶等。5.异构酶类: 酶促有机化合物转化成它的异构体的反应。6.连接酶类: 是一种催化两种大型分子以一种新的化学键结合一起的酶。测定方法分析:1.生化培养法作为酶活测定的重要方法之一,其又细分为分光光度法和滴定法。分光光度法:其基本原理是酶与底物混合经培养后产生某种带颜色的生成物,可在某一吸收波长下产生特征性波峰,再用分光光度计测定设定的标准物及生成物的吸光值,由此确定酶活性的含量。滴定法:如果产物之一是自由的酸性物质可用此法。如脂肪酶催化脂肪水解释放出脂肪酸,脂肪酸的含量可以通过滴定进行定量,通过计算反应过程中脂肪酸的增加量就可以计算出脂肪酶的酶活力。2.荧光法荧光法是一种基于荧光信号的酶活测定方法,其原理是通过测量酶促反应中荧光物质的变化来推算酶活性。荧光法具有较高的灵敏度和选择性,...
  • 点击次数: 0
    2024 - 11 - 14
    草原土壤储存有439 Gt有机碳(SOC),在调节区域乃至全球气候变化进程中起着重要作用。然而,全球气候变化背景下,大气氮沉降的“施肥效应”强烈地影响着土壤碳储存。因此,明确高寒草甸SOC组分对氮、磷富集的响应和潜在机制至关重要。西南民族大学高寒湿地生态保护研究创新团队马文明副研究员课题组依托青藏高原生态保护与畜牧业高科技研究示范基地和四川若尔盖高寒湿地生态系统国家野外科学观测研究站以红原高寒草甸为研究对象进行了长期氮磷添加实验。采取随机区组用尿素(CO(NH2)2)和过磷酸钙(Ca(H2PO4)2·H2O)设计7个施肥梯度,氮肥施尿素(46.65%N),磷肥施过磷酸钙(16%P2O5),施肥梯度分别为(0g尿素+0g过磷酸钙)/m2(CK)、(10g尿素)/m2(N10)、(30g尿素)/m2(N30)、(10g过磷酸钙)/m2(P10)、(30g过磷酸钙)/m2(P30)(5g尿素+5g过磷酸钙)/m2(NP10)、(15g尿素+15g过磷酸钙)/m2(NP30)。研究发现,氮和磷添加导致 SOC含量增加19.95%–36.66%;在相同施肥条件下,SOC含量随着施肥梯度的增加而增加,在N30处理下达到最高;N和P添加促进了脂肪族碳和芳香族碳的富集;与其他处理相比,NP30处理下SOC的稳定性最高,而P10处理下SOC的稳定性最低。表明N和P添加促进了不稳定碳的损失和稳定碳的富集,从而提高了SOC的稳定性,促进了高寒草甸SOC的封存。总体而言,氮磷添加改变了高寒草甸土壤有机碳的理化性质以及SOC的官能团组成,进而促进了SOC积累。因此,在退化的生态系统中添加氮和磷可能是改善土壤碳固存的有效措施。该项研究近期以题为Nitrogen and phosphorus supply controls stability of soil organic carbon in...
  • 点击次数: 0
    2024 - 11 - 11
    栢晖生物特色检测指标——同位素的测定:更所检测相关讯息so栢晖生物了解更多
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务