028-8525-3068
新闻动态 News
News 行业新闻

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

日期: 2024-04-08
标签:
最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系
公正 准确 规范 高效



文献解读

原名:Nutrient-induced acidification modulates soil biodiversity-function relationships

译名:养分诱导的酸化调节了土壤生物多样性-功能关系

期刊:Nature communications

IF:16.6

发表日期:2024.04

第一作者:Zhengkun Hu

摘要

背景:养分富集是全球变化的重要组成部分,它通过促进物种优势、改变营养相互作用和降低生态系统稳定性来破坏地上生物多样性和生态系统功能之间的关系。越来越多的证据表明,养分富集也会降低土壤生物多样性,并削弱地下生物多样性与生态系统功能之间的关系,但其潜在机制仍不清楚。

方法:通过为期13年的田间试验,探讨了养分富集(NP添加)对土壤性质、土壤生物多样性和多种生态系统功能的影响。

结果:土壤酸化是影响土壤多样性与生态系统多功能性关系的主要因素,而非矿质养分和碳(C)有效性的变化。氮和磷的添加显著降低了土壤pH、细菌、真菌和线虫的多样性,以及与C和养分循环相关的多种生态系统功能。另外,养分富集通过影响微生物多样性对高营养水平的食微线虫的多样性产生了负面影响。

结论:以上结果表明,养分富集诱导的酸化能够通过土壤食物网级联作用并影响生态系统功能,为养分富集影响土壤生物群落和生态系统特性的机制提供了新的见解。

研究背景


生物多样性在维持生态系统生产力和稳定性的各种生物地球化学和生态过程中起着关键的调节作用。在自然生态系统中,共存的物种执行着各种单独的功能,这反过来又支持了向人类社会提供的多种商品和服务。然而,诸如养分富集等人为干扰往往会降低物种丰富度,从而削弱生物多样性与生态系统功能(BEF)之间的耦合。例如,Hautier等人从全球42个草原的研究中发现,营养添加降低了植物多样性对生产力时间稳定性的积极影响。然而,尽管对植物群落和生态系统过程如何响应养分富集已经做了大量的研究,但在地下生态系统中是否也存在类似的养分效应趋势或模式尚不清楚。特别是野外环境且多种营养级相互作用的背景下,极少研究评估养分富集如何通过其对土壤生物群的影响来改变生态系统功能。

土壤生物群是高度多样化的,仅1g土壤中就含有多达10亿个细菌细胞,由数万个分类群组成,以及数十到数千种真菌、原生生物和线虫。越来越多的研究表明,由于土壤微生物和动物在有机物分解和养分循环等方面发挥着多种作用,土壤生物群多样性对维持有效的生态系统功能至关重要。例如,Delgado-Baquerizo等人表明,不同生态系统中土壤生物多样性的减少影响了多种生态系统功能,包括植物生产力、养分循环和病原体控制。然而,与通常处于单一营养水平的不同植物物种不同,土壤生物生活在复杂的土壤食物网中,其中涉及多种营养相互作用。大多数土壤生物生活在水膜上,对pH值和养分浓度等土壤条件的变化特别敏感。此外,细菌和真菌是土壤有机质的主要消费者,同时细菌和真菌生物量也是线虫和原生生物食物来源,并为植物释放养分的营养链的核心基础。然而,养分富集改变土壤生物多样性及其营养相互作用的机制很少得到实验验证,其对生态功能的影响也相对未知。

在全球范围内,通过化学施氮和工业沉积的人类活动至少使通过自然生物固氮的活性氮输入增加了一倍。此外,施用磷肥持续增加土壤磷素有效性,加速了植物氮吸收,从而提高植物生产力。现有大多数关于养分富集对植物多样性-功能关系的研究都是以植物为导向的,并且集中在单一营养级水平上。养分富集可能通过三种不相互排斥的机制影响土壤生物多样性及其与生态系统功能的关系(附图1)。首先,高土壤速效氮和/或磷含量通常会增加植物生长和地下总碳(C)输入(包括茎和根来源的C)。由于土壤微生物通常受C限制,提高C有效性可能会刺激土壤细菌和真菌的生长,并显著影响生物多样性-生态系统功能关系,另一方面,土壤细菌和真菌是支持复杂食物网的食物基础。其次,相对于其他元素,氮和磷等一些养分的可用性增加改变了土壤中的营养化学计量,并可能有利于一些富营养生物的竞争优势。因此,如果土壤群落仅由少数丰富的物种主导,生态系统功能可能与土壤生物多样性解耦。最后,养分富集,特别是高N输入,会引起土壤理化环境的深刻变化,可能严重改变土壤生物群多样性和植物-微生物相互作用。特别是NH4 +的输入(即微生物氧化NH4+产生质子,导致土壤酸化。H+的积累引起土壤酸化,并提高重金属的溶解度。(如Al和Mn),它们可能对微生物和植物产生毒性,并抑制微生物介导的过程。虽然这三种机制可以单独或共同影响养分富集对土壤生物群结构和功能的影响,但我们对它们对生态系统功能的相对贡献知之甚少。

利用长期施肥试验,本研究测试了三个假设,每个假设旨在评估养分富集可能影响土壤生物群多样性和功能的三种机制之一的能力。首先,如果养分富集主要通过缓解C对微生物的限制来影响微生物(图1),那么高水平的N和P添加应该会增加土壤生物多样性,从而进一步增强生态系统功能。其次,如果养分(N和/或P)限制主要影响土壤群落的结构、多样性和活性,那么高水平的N和P添加应该会降低土壤生物群的多样性,并进一步影响生态系统功能,如C和养分循环。第三,如果养分诱导的土壤酸化主要调节土壤群落的结构、多样性和活性,那么在较高的养分添加水平下,土壤pH值的降低应该会减少土壤生物群的多样性,进而对生态系统功能产生影响。


最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系


附图养分富集对土壤生物多样性和生态系统功能的影响示意图。机制1(“C限制假说);机制2(“营养限制假说);机制3(“土壤酸化假说)


主要结果

NP120处理下土壤不稳定碳含量显著高于NP30和NP90处理,对照与养分处理间差异不显著(图1a)。土壤矿质氮和有效磷沿NP梯度增加,分别从3.67 mg N·kg - 1土壤增加到7.78 mg N·kg - 1土壤,从8.12 mg P·kg - 1土壤增加到173.23 mg P·kg - 1土壤(图1b, c)。土壤pH值随着NP输入的增加而下降,从未施肥对照的7.20下降到NP120下的6.54 (p < 0.05; 图1 d)。8种土壤生物群(细菌、真菌、总线虫,以及食细菌、食真菌、植物寄生、杂食性和捕食性线虫)多样性和多营养级多样性均随NP梯度的增大而减小(附图2和3)。

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

养分富集对土壤不稳定碳、养分含量和土壤pH值的影响

养分添加对生态系统功能的影响存在差异(附图4)。具体而言,NP添加对土壤总碳和总氮没有影响,但随着土壤中磷的积累,微生物活性和磷相关参数(微生物量P和P矿化)显著增加(附图4)。NP添加显著降低了与C和N循环相关的指标(微生物生物量C和N,糖、几丁质和聚合物的降解,烷基与O-烷基的比例)和生态系统稳定性(团聚体稳定性,对寄生线虫的抗性)(附图4)。总的来说,在高NP输入下,14个生态功能中有8个功能减少,3个功能保持不变,其余3个功能增加。

使用平均法时,在NP30、NP90和NP120下,生态系统多功能性(EMF)分别下降了11%、28%和36%(附图5a)。使用多阈值法时,NP120显著减少了超过30%、50%和70%阈值的功能数量,而NP90显著减少了超过30%阈值的功能数量(附图5b-d)。在30%、50%和70%阈值下的功能数与平均法计算的EMF呈正相关(p< 0.05;附图5e-g),表明两种方法的结果高度一致。

土壤不稳定碳含量与杂食性线虫多样性呈负相关(p< 0.05;(附图6),但与细菌、真菌、总线虫、食细菌者、食真菌者、植物寄生虫、捕食性线虫的多样性(补充图6),或多营养级多样性不相关(图2a)。土壤矿质氮和有效磷与所有8类土壤生物群的多样性(补充图7和8)和多样性(图2b, c)呈负相关。土壤pH与所有8类土壤生物群的多样性(附图9)和多样性(图2d)呈正相关。

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

养分富集对土壤理化性质与土壤多营养级多样性关系的影响

为了研究微生物多样性的变化是否沿着营养链向上级联,研究了微生物(细菌和真菌)和食微线虫(食细菌和食真菌线虫)以及猎物(微生物、食细菌、食真菌和植物寄生线虫)和捕食者(杂食和捕食线虫)之间的关系。结果表明,微生物的多样性和猎物多样性分别与食微线虫和捕食性线虫的多样性呈正相关 (p< 0.05; Fig. 3a, b)。

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

养分富集对土壤猎物与捕食者多样性关系影响

进一步探讨了养分引起的土壤不稳定碳、养分和土壤pH的变化与生态系统功能的关系。土壤不稳定C与磷矿化、微生物活性和团聚体稳定性呈正相关,与几丁质、木质素和聚合物的降解以及对植物寄生虫的抗性呈负相关(附图10)。然而,土壤不稳定C与EMF没有显著相关(图4a)。相比之下,土壤矿质N和速效P与磷矿化、微生物生物量P和微生物活性呈正相关,但与微生物生物量C和N、糖、几丁质和聚合物的降解、烷基与O-烷基比以及对植物寄生虫的抗性呈负相关(附图11和12),导致土壤养分与EMF总体呈负相关(图4b, c)。相反,土壤pH值与EMF呈正相关(图4d)。在个别功能方面,土壤pH与微生物生物量C和N、糖、几丁质和聚合物的降解、烷基与O-烷基比、团聚体稳定性和抗植物寄生虫能力呈正相关。然而,它与磷矿化、微生物生物量P和微生物活性呈负相关(附图13)。以上结果表明,在养分富集的情况下,碳和养分(N和P)有效性的增加对大多数生态系统功能没有积极影响。

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

养分富集对土壤理化性质与土壤生态系统多功能性(EMF)关系的影响

为了弄清养分富集对多样性-功能关系的影响,首先评估了土壤生物多样性与生态系统功能之间的关系。就单个功能而言,细菌、真菌和线虫的多样性与14个功能中的9个功能(微生物生物量C和N、糖、几丁质、木质素和聚合物的降解率、烷基与O -烷基比、聚集体稳定性和寄生线虫抗性)呈一致且正相关(Fig. 5a)。然而,所有土壤生物群的多样性与添加养分增加的微生物活性、微生物量磷和磷矿化3个功能呈负相关(Fig. 5a)。平均EMF与细菌、真菌、线虫和整个土壤生物群的多样性之间存在显著的正相关关系,与任何土壤生物个体组相比,多营养级多样性- EMF关系解释了更多的差异(图5b)。当阈值在30%、50%和70%水平时计算EMF,土壤多样性与EMF之间的显著关系仍然存在(图5 c)。

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

5土壤生物多样性与土壤功能或生态系统多功能性之间的关系

定量分析了养分富集对对照(NP0)和3种养分富集处理下土壤多样性-功能关系的影响。在NP0对照中,多功能性(EMF)与土壤细菌、真菌和线虫的多多样性(图6a)或多样性(附图14a)呈显著正相关。然而,在任何添加养分的处理中,土壤生物多样性与EMF之间都没有类似的正相关关系(图6b-d和附图14b-d),表明养分富集削弱了土壤多样性-功能关系。

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

营养富集弱化了多样性-功能联系

尽管NP添加对土壤pH、活性碳和土壤养分有强烈影响,但SEM结果表明,土壤pH主要通过其对土壤生物群多样性和线虫的直接影响来影响EMF(图7a)。有趣的是,矿物质N并没有直接和显著地影响微生物或线虫的多样性。此外,土壤pH通过其对微生物多样性直至线虫多样性的级联效应间接影响EMF。微生物多样性和线虫多样性对EMF均有正向影响。通过计算所有变量对EMF的标准化总影响,我们发现土壤pH值对EMF的正向综合影响最大,其次是微生物和线虫多样性(图7b)。

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系

7养分富集对生态系统多功能性的直接和间接影响的结构方程模型

# 栢晖 #

—特色检测指标—

土壤、植物酶活检测

氨基糖、木质素PLFA、CUE

磷组分、有机酸、有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定

了解更多检测信息

按区域添加微信咨询详情

最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系


最新文献解读(IF:16.6)|养分诱导的酸化调节了土壤生物多样性-功能关系


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务