028-8525-3068
新闻动态 News
News 行业新闻

文献解读(2023.11发表)| 人工林长期自然演化过程促进土壤微生物残留物碳的积累:老龄人工林土壤有机碳的固持作用

日期: 2023-12-04
标签:
文献解读




原名:Accumulation of soil microbial extracellular and cellular residues during forest rewilding: Implications for soil carbon stabilization in older plantations

译名:人工林长期自然演化过程促进土壤微生物残留物碳的积累:老龄人工林土壤有机碳的固持作用

期刊:Soil Biology and Biochemistry

IF:9.7

发表时间:2023.11

第一作者:石 珂

通讯作者:阮宏华教授


01
研究背景

森林是全球最大的陆地碳库,其中三分之二的碳储存在土壤中,在全球碳循环过程和应对全球气候变化中发挥至关重要的作用。然而,自上世纪以来,天然林以前所未有的速度消失,现存的天然林迫切需要保护,这导致了人工林的建立和迅速扩张。目前,为了帮助人工林提供多种生态系统服务,提倡减少人为干预以鼓励人工林的自然演化。然而,不同土壤有机碳组分对全球气候变化和人工林自然演替的响应存在差异。微生物残留物作为土壤有机碳(Soil organic carbon, SOC)的重要成分,其是否会随着林分发育而增加,对土壤有机碳库的贡献又如何变化仍不清楚。

02
研究方法

该项研究将微生物残留物分为胞外残留物和胞内残留物,以胞外聚合物(Extracellular polymeric substance, EPS)作为胞外残留物的代表,以氨基糖为生物标识物衡量胞内残留物,研究了水杉人工林近40年(6 ~ 45年)的生长发育过程中微生物残留物的变化(图1)。

文献解读(2023.11发表)| 人工林长期自然演化过程促进土壤微生物残留物碳的积累:老龄人工林土壤有机碳的固持作用

土壤微生物残留物随林分发育的积累过程与机制假设

03
结果

人工林的长期自然演化过程促进了土壤微生物残留物的线性积累,增加了其对土壤有机碳的贡献。其中,EPS-多糖增加了126.5%;总胞内残留物碳、真菌残留物碳和细菌残留物碳分别增加了73.4%、77.2%和54.3%(图2)。EPS-多糖和总胞内残留物碳对土壤有机碳的贡献分别增加了66.1%和32.1%(图3)。微生物胞外残留物和胞内残留物的主要驱动因子不同。细根生物量是胞外残留物的主要驱动因子,土壤氮和有机碳含量是胞内残留物的主要驱动因子(图4)。

文献解读(2023.11发表)| 人工林长期自然演化过程促进土壤微生物残留物碳的积累:老龄人工林土壤有机碳的固持作用

人工林林分发育及自然演化过程中土壤微生物残留物的变化

文献解读(2023.11发表)| 人工林长期自然演化过程促进土壤微生物残留物碳的积累:老龄人工林土壤有机碳的固持作用

人工林林分发育及自然演化过程中土壤微生物残留物对土壤有机碳的贡献

文献解读(2023.11发表)| 人工林长期自然演化过程促进土壤微生物残留物碳的积累:老龄人工林土壤有机碳的固持作用

人工林生长发育过程中土壤生物和物理化学因子对土壤微生物残留的影响

04
结论

该研究阐明了在人工林长期自然演化过程中,微生物胞外和胞内残留物可以在土壤中不断积累,初步揭示了人工林土壤稳定性有机碳积累的主要机制(图5),表明将这两种微生物残留物纳入土壤碳模型对预测全球气候变化非常必要。另外,从人工林管理实践方面,允许人工林长期自然演化、延长其轮伐期能促进土壤有机碳的固存和稳定,对提高人工林应对全球气候变化中的作用具有重要意义。

文献解读(2023.11发表)| 人工林长期自然演化过程促进土壤微生物残留物碳的积累:老龄人工林土壤有机碳的固持作用

人工林林分生长发育及自然演化过程中土壤微生物残留物积累的概念


论文id

https://doi.org/10.1016/j.soilbio.2023.109250



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务