028-8525-3068
新闻动态 News
News 行业新闻

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异

日期: 2023-08-14
标签:

文献解读   


原名:Divergent accumulation of microbial necromass and plant lignin components in grassland soils

译名:草地土壤中微生物残体和植物木质酚积累的差异

期刊:Nature Communications

IF:16.6

发表时间:2018

第一作者:Tian Ma

摘要

微生物和植物是如何促进土壤有机碳(SOC)积累的?为此,我们使用氨基糖和木质素酚分别作为微生物坏死物质和植物木质素成分的示踪剂,并与世界其他草原土壤的已发表数据进行比较,研究它们在蒙古草原表层土壤中的分布。在所有考察的草原土壤中,木质素酚类会减少,而氨基糖则会随着 SOC 含量的增加而增加,这为微生物残体在 SOC 积累中的关键作用提供了大陆尺度的证据。此外,与细粒土壤中粘土对氨基糖积累的控制不同,蒙古粗粒土壤中干旱对氨基糖积累和木质素分解起着核心作用。因此,干旱度的变化可能会对不同质地的草原土壤中微生物介导的 SOC 积累产生不同的影响。

研究背景

大部分有机碳的周转是比较缓慢的,从百年到千年。微生物和植物如何促进这些土壤有机碳库的形成和积累,是与土壤碳动态和对全球变化的响应有关的一个基本问题,也是一个备受争议的问。传统上,木质素等植物结构化合物因其化学难降解性和在腐烂废弃物中的积累而被认为是缓慢循环的 SOC 的主要贡献者。然而,越来越多的证据表明,木质素主要作为植物碎屑存在于颗粒中,而不是保存在矿质土壤中,在矿质土壤和老土组分中的含量也相对较少,这表明木质素在 SOC 积累中的作用可能并不像以前认为的那样重要。

目前的共识是,在缓慢循环的 SOC 的积累过程中,微生物产生的碳发挥着更重要的作用。随着植物凋落物的腐烂,土壤微生物会将可用碳转化为微生物残体或微生物加工的化合物以及自身的生物量。由于微生物倾向于附着在表面上,因而微生物残留物会积聚在与矿物质相关的土壤组分上。微生物生物量的周转速度很快,只占 SOC 的很小一部分,然而微生物残体则被认为是相对稳定的 ,并且随着群落的反复更替而在土壤中累积。这一过程包含在海洋研究人者最初提出的微生物碳泵中,也被认为是土壤中有机碳持久存在的关键机制。然而,由于分析工具有限,无法将自然土壤中微生物产生的碳与植物产生的碳区分开来,这一机制至今尚未在景观尺度上得到验证。人们对环境中微生物衍生和植物衍生成分保存的控制或微生物固存 SOC 的最佳条件知之甚少。填补这些知识空白不仅有助于理解 SOC 在全球变化下的周转,还能为开发包含微生物过程的土壤碳模型提供概念指导。

因此,我们利用两种广为接受的生物标记物(即氨基糖和木质素酚)来分别示踪微生物死亡物质和植物木质素组分。我们比较了它们在蒙古草原两个大规模横断面上 38说个重复地点表层土壤(0-10 厘米)中的分布情况(共涉及 113 个氨基酸糖和 39个木质素酚样本),并对不同草地上的典型植被进行了木质素分析。为了补充风化不良、质地粗糙的蒙古土壤的数据集,我们使用类似分析方法测定并进一步汇编了其他地方草原表层土壤(0-10 厘米)中氨基糖和木质素酚的所有已发表数据(包括分别为 54 和 70 个氨基糖和木质素酚浓度数据)。通过类似环境变量的统计分析,我们比较了蒙古草原中这两种生物标志物积累的调节机制,并比较了蒙古粗粒土壤与其他地方细粒草原土壤中环境对氨基糖积累的影响。通过这种方法,我们可以评估草原土壤中微生物坏死物与植物木质素组成的大规模分布和保存情况,其环境梯度范围之大前所未有。总之,我们证明了在所有考察过的草原土壤中,氨基糖而非木质素酚与 SOC 的耦合变化,并强调了与细粒度土壤相比,蒙古粗粒度土壤中干旱对氨基糖累积和木质素分解的关键作用。我们的研究结果为微生物坏死物质在SOC积累中的关键作用提供了概念性证据,并表明在不同质地的草原土壤中,干旱度的变化可能会对微生物介导的 SOC 积累产生不同的影响。

主要结论

1、氨基糖和木质素的分布

在蒙古草原表层土壤中(图1a),氨基糖的归一化浓度为 21-158 mg/g SOC(图1b),其中以氨基葡萄糖为主,这与文献数据中其他地方草地表层土壤中浓度范围类似。相比之下,木质素酚占 SOC 的比例较小(4-60 mg/g SOC;图1c),这也与文献数据一致。值得注意的是,氨基糖和木质素酚在蒙古横断面上的分布模式截然不同(图1b、c)。与其他植被类型的土壤相比,干旱荒漠土壤中木质素酚的浓度更高,而单位SOC中氨基酸糖的含量较低(p < 0.05)。这种差异与不同覆盖地点的植被的化学成分无关,因为在不同植被类型的重叠植物中,单位有机碳的有机碳氮比和木质素含量都没有差异。木质素酚与克拉松木质素的比值从 0.06 到 0.30 不等,在不同植被类型中也没有差异(p > 0.05;图2a)。因此,各横断面木质素大分子中木质素酚的产量具有可比性。此外,木质素酚和氨基糖虽然没有显著的相关性(p > 0.05),可能是由于其他 SOC 成分(如草原土壤中普遍存在的黑碳)的变化造成的,但这两种生物标志物的 SOC 归一化浓度与蒙古草原表层土壤以及所有草地的 SOC 含量显示出相反的相关性(图 3);氨基糖随着木质素酚的增加而增加,但木质素酚的增加与 SOC 含量的增加之间没有显著的相关性(p > 0.05,图 3),氨基糖随 SOC 浓度的增加而增加(n = 91;p < 0.05),木质素酚则随之减少(n = 84;p < 0.05)。

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异

图1 采样点和生物标志物浓度。(a)蒙古草原采样点的空间分布(b)氨基糖归一化浓度(c)木质素酚浓度

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异

图2 蒙古草原覆盖植被中木质素的浓度和组成。(a)木质素酚类和克拉森木质素的标准化浓度以及其比值(b)V单体和S单体的比值

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异

图3 生物标志物浓度与土壤有机碳(SOC)含量的相关性。(a)氨基糖浓度和SOC的相关性 (b)木质素酚浓度和SOC的相关性


木质素降解可通过香草基酚(V)和丁香酚(S)的酸醛比值Ad/Al来进一步评估,通常Ad/Al会随着木质素氧化程度的增加而增加。与蒙古横断面上的其他植被类型相比,草甸草原上覆植物的地上生物量显示出较低的(Ad/Al)s 值,相似的(Ad/Al)v 值(图2b),而所有植被类型的地下生物量具有相似的 Ad/Al比值(p > 0.05)。相比之下,非草甸草原沙漠土壤的(Ad/Al)s 比值低于所有其他土壤(p < 0.05)。此外,在蒙古土壤中,随着 SOC 含量的增加和木质素酚浓度的降低,Ad/Al 比值都会增加(p < 0.05;图 4),这证实了在 SOC含量较低和木质素酚浓度较高的土壤中,木质素氧化阶段较低。

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异

图4 蒙古草原土壤中木质素的酸醛比值的变化(a)(c) V和S的酸醛比值和SOC的相关性(b)(d)V和S的酸醛比值和木质素酚浓度的相关性


2、环境因子对蒙古土壤的影响

根据结构方程,在整个蒙古草原上,干旱指数而非土壤特性对这两种生物标志物的浓度有直接和主要的影响,分别解释了氨基酸糖19.7% 和木质素酚40.9%  的变化,尽管方向相反(图 5a,b)。随着干旱指数的增加,氨基糖增加(表明干旱程度降低),木质素酚则减少(p < 0.05)。多重逐步回归分析(其中干旱度指数是模型中唯一保留的变量)和偏相关分析证实了干旱度的主要影响:在考虑干旱度指数的影响后,所有变量都不会对两种生物标记物的浓度产生任何影响(p > 0.05)。相反,在考虑了其他变量(除 SOC 和氨基糖的 N 外)的影响后,干旱指数与这两种生物标志物仍有明显的相关性(p < 0.05)。此外,干旱对土壤中木质素酚分布的影响与覆盖植被中的木质素酚丰度无关,后者与干旱指数没有相关性(p > 0.05)。

为了进一步证实干旱对木质素降解的控制作用,我们使用多元逐步回归分析法研究了环境对蒙古土壤中 Ad/Al比值的影响。植物生物量中的(Ad/Al)v 比值与干旱指数呈负相关(p < 0.05),但与土壤中的任何变量都不相关(p > 0.05)。然而,在所有与(Ad/Al)s 比率有显著相关性的变量中(包括干旱指数、地上生物量、SOC 和 N 含量;p < 0.05),干旱指数是唯一最重要的变量,对该比率有正向影响。同样,这种影响与覆盖植被的木质素成分无关,因为植物生物量的(Ad/Al)s 比率与干旱指数没有相关性(p > 0.05)。

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异

图 5 氨基糖和木质素酚与环境变量的级联关系。(a)环境对蒙古草原氨基糖的主要影响途径(b)环境对蒙古草原木质素酚的主要影响途径 


3、对氨基糖积累的不同控制

与蒙古土壤相比,非蒙古草原表层土壤中的氨基糖只与考察变量(包括土壤 pH 值、SOC 和 N 含量;补充数据 2)中的粘土含量呈正相关(p < 0.05;图 6a),而不受干旱指数的影响(p > 0.05;图 6b)。值得注意的是,蒙古土壤的粘土含量(0.44 ± 0.03%; n = 38)远低于文献(即美国大平和德国的草原)(18.5 ± 1.42%; n = 38)。诚然,我们采用激光衍射法得出的蒙古土壤粘土含量与其他研究的结果相似,但与非蒙古研究采用的筛分离心法相比,往往会低估细颗粒的含量。不过,Evans 等人使用相同的比重计法证实,蒙古草原的土壤比美国大平原的土壤更粗糙(平均粘土含量为 12.5%)(平均粘土含量为 27%)。因此,在质地细腻的土壤中,粘土对氨基糖的保护作用似乎会抑制干旱的影响。

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异

图 6 不同土壤中氨基糖浓度的变化。(a)蒙古草原和非蒙古草原氨基糖和土壤粘土含量Pearson相关性(b)蒙古草原和非蒙古草原氨基糖和干旱指数Pearson相关性(n=38)



# 栢晖 #

—特色检测指标—

土壤、植物酶活检测

氨基糖、木质素PLFA

磷组分、有机酸、有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定

了解更多检测信息

按区域添加微信咨询详情

文献解读 |草地土壤中微生物残体和植物木质酚积累的差异


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 20
    一、试剂药品浓盐酸,氢氧化钠,氯化钡,酚酞二、试剂配制2.1.0.05mol/l盐酸:取4.16ml浓盐酸缓缓加入1000mlUP 水中。2.2.0.1mol/l氢氧化钠:0.4g氢氧化钠用UP水定容至100ml。2.3.酚酞指示剂:称取0.5g酚酞,用95%乙醇溶解定容至100ml。2.4.11mol/l氯化钡溶液:20.82g氯化钡用UP水定容至100ml。三、洗涤方法所有新的玻璃器皿:用洗涤剂清洗干净后,再用自来水洗,再超声,再用UP水冲洗,再放入90度烘箱烘干。四、实验方法4.1 土壤预培养:称取适量土壤样品置于常温下预培养数天,使土壤恢复到常温状态。4.2 密闭培养:将恢复到常温状态的样本,称取10g置于250ml广口具塞瓶中,内置盛有10ml0.1mol/l氢氧化钠溶液的小玻璃瓶,用蒸馏水调节土壤湿度至其最大持水量的60%,5℃恒温培养7天。4.3 测定:培养结束后取出里面盛氢氧化钠的小玻璃瓶,先加入2ml氯化钡溶液,再加入2滴酚酞指示剂,再用0.05mol/l的盐酸滴定至红色消失,记录滴定体积,计算出CO2的释放量,同时做空白对照(空白用水代替)。更多检测相关讯息so栢晖生物了解~
  • 点击次数: 0
    2024 - 09 - 12
    1、试剂柠檬酸(AR) 柠檬酸三钠(AR) 无水甲醇(AR) 三氯甲烷(AR) 丙酮(AR) 甲苯(AR) 氢氧化钾(AR) 冰乙酸(AR) 正己烷(色谱纯) 十九烷酸甲酯(19:0)2、仪器气相色谱仪 冻干机 振荡仪 过柱装置 水浴锅 水浴氮吹仪 干式氮吹仪 高速离心机3、材料高速离心管 试管(100 mL、5 mL) 10 mL具塞试管 3 mL硅胶柱 玻璃滴管(可拆卸橡胶头)黑色塑料袋 玻璃量筒(1 mL、5 mL) 移液器(5 mL、1 mL、100 μL)4、试剂制备柠檬酸缓冲液:称取柠檬酸37.5 g,柠檬酸三钠44.1 g,溶于1 L超纯水中。提取液:依次加入柠檬酸缓冲液64 mL、无水甲醇160 mL、三氯甲烷80 mL,混合均匀。(现用现配,低温隔夜会析出盐)。甲醇甲苯混合溶液(1:1):15 mL无水甲醇、15 mL甲苯混合均匀(现用现配)。0.5 mol/L KOH溶液:称取28.05 g KOH,溶于1 L超纯水中。0.2 mol/L KOH甲醇溶液(2:3):取0.5 mol/L KOH溶液40 mL,溶入60 mL无水甲醇。1 mol/L冰乙酸溶液:取1.74 mL冰乙酸,溶入30 mL去离子水。5、样品处理土样冻干:称取土壤4.00 g(沙土8.00g)于高速离心管中,冰冻过夜,随后放入冻干机冻干。土壤含水率测定:称取土壤5.00 g于105 ℃下烘干3 h,随后冷却至室温,取出称重,计算含水率。6、测定6.1取出冻干土样,加入23ml提取液,避光振荡2h;6.2离心取上清液,重复步骤1 ,合并两个上清液;6.3依次加入三氯甲烷、柠檬酸缓冲液,避光过夜;6.4去除上清液,吹干三氯甲烷;6.5过柱;6.6吹干无水甲醇,用甲醇甲苯溶液、KOH甲醇溶液复溶,水浴,冷却至室温;6.7加入去离子水、冰乙酸...
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务