028-8525-3068
新闻动态 News
News 行业新闻

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

日期: 2023-05-25
标签:

     

原名:Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems

译名:管理良好的草地而不是一年生谷物或饲草种植系统增加了黑沃土中的持久性碳

期刊:Proceedings of the National Academy of Sciences

IF:12.779

发表时间:2022.2

第一作者:芮亦超

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
摘要

在草地上进行的集约化作物生产已经向大气释放了大量的碳(C)。无论是最大限度地减少土壤扰动、多样化的作物轮作、或重建多年生草原和整合牲畜是否可以减缓或扭转这一趋势仍然是高度不确定的。本研究在美国中北部通过田间试验调查了有机碳的积累、以及颗粒(POM)和矿物相关(MAOM)有机质的分布,并评估了微生物性状与这些变化的关系。


结果表明,将豆科植物或粪肥添加到一年生种植系统中提高乐POM-C、微生物生物量和微生物碳利用效率,但没有显著增加微生物残体积累,以及MAOM-C或总SOC的存储。多样化、循环放牧的牧场管理有可能增加土壤中持久性碳,突出了管理良好的草原在智能型农业中的关键作用。

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
研究背景

过去150年,现代农业耗尽了世界上许多耕地的土壤有机碳 (SOC) 。在农业土壤中建立土壤有机质 (SOM) 对于我们抵抗这种趋势并满足我们的需求至关重要。来自草地的黑沃土覆盖地球表面约9.16亿公顷,是北美、南美和欧亚大陆的农业中心地带。自开始种植以来,这些黑沃土已释放了约2Pg C。增强黑沃土中的SOM不仅可以抵消全球温室气体排放的一部分,而且还可以改善土壤健康,这是粮食生产、饮用水和生物多样性等重要生态系统服务的基础。


模拟和概念建模表明,黑沃土的SOM积累潜力巨大,但这些土壤的集约化农业使用是否可以积累碳(C),并保持它相对较长的时间仍然存在不确定性。SOM由形成、持久性和功能不同的组分组成。减少耕作、多样化作物轮作以及添加豆类和粪肥被认为是在农田中再生SOM的有希望的策略。但研究表明尽管它们似乎增加了相对未分解的颗粒有机物(POM)部分,这与改善土壤健康直接相关,但它们在建立更持久的矿物相关有机物(MAOM)和提高软土中总碳储量和持久性的能力一直存在争议。


越来越多的证据表明,MAOM主要是微生物残体与矿物表面结合形成的,因此促进有效微生物生长和大量坏死物质产生用于有机矿物结合能够驱动土壤中持久碳的积累。基于此,本研究在威斯康星州综合种植系统开展试验,探究不同管理条件下土壤有机质的数量和组成及其与土壤微生物性状的关系。

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
研究方案

威斯康星州综合种植系统由六个并列的常规和替代种植系统组成,其中包括三个谷物系统:1)连续单一栽培玉米(Maize)系统,每年耕作,2)免耕玉米-大豆(MS)轮作,3)有机管理的玉米-大豆-小麦(MSW)轮作,其在小麦之后具有豆类作物覆盖。和三种饲草系统:4)玉米-苜蓿-苜蓿-苜蓿(MAAA)轮作,5)有机玉米-燕麦/苜蓿/苜蓿(MOA)轮作,和6)具有混合豆类与禾草的多样化、轮牧的牧场。

 

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响



对不同系统有机质组分(POM、MAOM),微生物生物量与CUE特征,微生物残体,以及土壤胞外酶测定,探究不同管理措施对持久碳积累的影响

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
研究结果

一、管理良好的牧场土壤总碳和与矿物质相关的碳含量最高


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


1.(1)减少耕作、轮作多样化或在这些土地添加豆类或肥料不太可能建立 MAOM-C 和 SOC,而土地管理为牧场有能力做到这一点。

2)与MaizeMSMSW MAAA 相比,牧场中的 SOC 储量提高了15% 28%MAOM-C 比所有其它系统高 18% 29%。

(3)MaizeMSPOM-C\MAOM-CSOC没有差异。与MaizeMS相比,基于苜蓿的系统(MOA MAAA)中的POM-CN显著更高,并且在牧场中最高。



文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


2.(1)Maize和MS的POM-C\MAOM-C或SOC没有差异。与Maize和MS相比,基于苜蓿的系统(MOA 和 MAAA)中的POM-C和N显著更高,并且在牧场中最高。

2)基于苜蓿的系统POMC:N ratio显著低于MaizeMS。

(3)有机谷物系统(MSW)具有豆科覆盖作物和肥料添加,但总和地下C输入较少,也具有比Maize和MS更高的POM-C和N以 及更低的 POM C:N 比。


二、在一年生作物系统中掺入豆类和肥料可增强微生物的生长,但不能增加微生物残体或MAOM


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

1.牧场仅脂肪族C-H官能团显著高于其它系统,芳香族和 C-O 官能团在牧场最低。除牧场外,其它系统四种官能团均无显著差异。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

2.Maize和MS在CUE、MBC或氨基糖含量(微生物坏死物质的生物标志物)方面没有差异。与基于谷物的系统相比,基于苜蓿的系统具有更高的微生物CUE和MBC,但没有更高的微生物坏死物质积累。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

3.与MAOM-C的趋势相似,微生物残体生物标志物(氨基糖)的含量在牧场中最高,但在其他系统中没有显著差异。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

4.微生物残体与脂肪族碳是MAOM-C主要贡献者。CUE和POM C:N之间存在负相关关系,表明使用C底物的微生物生理潜力受输入的C:N比率调节。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

分段结构方程模型显示,MAOM-C与土壤中积累的微生物残体数量直接相关,但与微生物生物量或CUE无关,表明添加低C:N豆科植物和粪肥增强微生物CUE可能并不总是导致微生物坏死物质或 MAOM-C 的积累增加。


三、在管理良好的牧场中,MAOM的形成比一年生作物系统更有效,矿化较慢

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


MSW和MOA中较高的PPO活性和 MOA中较高的PER活性表明在这些低施肥系统中SOM分解比高施肥系统和牧场更快,这表明微生物在这些系统中,坏死物质或MAOM 可能会快速矿化,牧场多酚氧化酶与过氧化物酶活性与其它系统相比较低

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
结论

黑沃土的一年生谷物或半年草料系统中实施免耕、轮作、豆类和肥料添加可能会改善土壤健康,但不太可能使其表土(0 至 30 cm)实现大气碳汇。

结合低C:N输入可能会增强POM和微生物C循环,但不会导致微生物坏死和MAOM-C增加,这可能是因为更高的SOM矿化。

除了减少侵蚀和养分流失、增加渗透和储水以及增强生物多样性外,管理良好的多年生放牧草地有可能在黑沃土中形成持久的土壤碳,使其成为智能型农业的重要组成部分。

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

END


◀栢晖生物▶ 

 特色检测指标

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定

了解详情so栢晖生物


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 10 - 18
    栢晖文献解读原名:Canopy and understory nitrogen additions differently affect soil microbial residual carbon in a temperate forest译名:林冠和林下氮素添加对温带森林土壤微生物残体碳的影响不同期刊:Global Change BiologyIF:10.8发表日期:2024.7(网络首发2024.7)第一作者:Yuanqi Chen,湖南科技大学1背景对森林的研究主要集中在林下加氮对微生物和微生物残体的影响上,但对自然界氮沉积的主要途径——植物冠层氮沉积的影响还没有明确的探讨。本文研究了10年N添加量(25和50 kg N ha−1yr−1)和模式(冠层和林下)对温带阔叶林土壤微生物残体的影响。2假设(1)N的添加减轻了微生物对N的限制,增加了土壤中微生物生物量和微生物残体碳;(2)冠层氮的截留减少了直接进入土壤的氮量,所以林下N的添加对微生物残体的影响比冠层N的添加更强。3材料与方法(1)本研究在中国河南省鸡公山国家级自然保护区大别山国家级森林生态系统野外观测研究站(北纬31°46′~ 31°52′,东经114°01′~ 114°06′)进行;(2)共随机设4个区组。每个块包含5个处理:CT(对照,不添加氮素)、CN25 (25 kg N / ha−1yr−1冠层添加氮素,低氮)、CN50 (50 kg N /ha−1yr−1冠层添加氮素,高氮)、UN25 (25 kg N / ha−1yr−1林下添加氮素,低氮)和UN50 (50 kg N / ha−1yr−1林下添加氮素,高氮);(3)施氮方式为NH4NO3溶液,4 ~ 10月每月施氮(每年7次)。为了增加树冠N,在每个地块的中心设置了一个35米高的塔,以支持洒水装置和抽...
  • 点击次数: 0
    2024 - 09 - 20
    一、试剂药品浓盐酸,氢氧化钠,氯化钡,酚酞二、试剂配制2.1.0.05mol/l盐酸:取4.16ml浓盐酸缓缓加入1000mlUP 水中。2.2.0.1mol/l氢氧化钠:0.4g氢氧化钠用UP水定容至100ml。2.3.酚酞指示剂:称取0.5g酚酞,用95%乙醇溶解定容至100ml。2.4.11mol/l氯化钡溶液:20.82g氯化钡用UP水定容至100ml。三、洗涤方法所有新的玻璃器皿:用洗涤剂清洗干净后,再用自来水洗,再超声,再用UP水冲洗,再放入90度烘箱烘干。四、实验方法4.1 土壤预培养:称取适量土壤样品置于常温下预培养数天,使土壤恢复到常温状态。4.2 密闭培养:将恢复到常温状态的样本,称取10g置于250ml广口具塞瓶中,内置盛有10ml0.1mol/l氢氧化钠溶液的小玻璃瓶,用蒸馏水调节土壤湿度至其最大持水量的60%,5℃恒温培养7天。4.3 测定:培养结束后取出里面盛氢氧化钠的小玻璃瓶,先加入2ml氯化钡溶液,再加入2滴酚酞指示剂,再用0.05mol/l的盐酸滴定至红色消失,记录滴定体积,计算出CO2的释放量,同时做空白对照(空白用水代替)。更多检测相关讯息so栢晖生物了解~
  • 点击次数: 0
    2024 - 09 - 12
    1、试剂柠檬酸(AR) 柠檬酸三钠(AR) 无水甲醇(AR) 三氯甲烷(AR) 丙酮(AR) 甲苯(AR) 氢氧化钾(AR) 冰乙酸(AR) 正己烷(色谱纯) 十九烷酸甲酯(19:0)2、仪器气相色谱仪 冻干机 振荡仪 过柱装置 水浴锅 水浴氮吹仪 干式氮吹仪 高速离心机3、材料高速离心管 试管(100 mL、5 mL) 10 mL具塞试管 3 mL硅胶柱 玻璃滴管(可拆卸橡胶头)黑色塑料袋 玻璃量筒(1 mL、5 mL) 移液器(5 mL、1 mL、100 μL)4、试剂制备柠檬酸缓冲液:称取柠檬酸37.5 g,柠檬酸三钠44.1 g,溶于1 L超纯水中。提取液:依次加入柠檬酸缓冲液64 mL、无水甲醇160 mL、三氯甲烷80 mL,混合均匀。(现用现配,低温隔夜会析出盐)。甲醇甲苯混合溶液(1:1):15 mL无水甲醇、15 mL甲苯混合均匀(现用现配)。0.5 mol/L KOH溶液:称取28.05 g KOH,溶于1 L超纯水中。0.2 mol/L KOH甲醇溶液(2:3):取0.5 mol/L KOH溶液40 mL,溶入60 mL无水甲醇。1 mol/L冰乙酸溶液:取1.74 mL冰乙酸,溶入30 mL去离子水。5、样品处理土样冻干:称取土壤4.00 g(沙土8.00g)于高速离心管中,冰冻过夜,随后放入冻干机冻干。土壤含水率测定:称取土壤5.00 g于105 ℃下烘干3 h,随后冷却至室温,取出称重,计算含水率。6、测定6.1取出冻干土样,加入23ml提取液,避光振荡2h;6.2离心取上清液,重复步骤1 ,合并两个上清液;6.3依次加入三氯甲烷、柠檬酸缓冲液,避光过夜;6.4去除上清液,吹干三氯甲烷;6.5过柱;6.6吹干无水甲醇,用甲醇甲苯溶液、KOH甲醇溶液复溶,水浴,冷却至室温;6.7加入去离子水、冰乙酸...
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务