028-8525-3068
新闻动态 News
News 行业新闻

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

日期: 2023-05-25
标签:

     

原名:Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems

译名:管理良好的草地而不是一年生谷物或饲草种植系统增加了黑沃土中的持久性碳

期刊:Proceedings of the National Academy of Sciences

IF:12.779

发表时间:2022.2

第一作者:芮亦超

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
摘要

在草地上进行的集约化作物生产已经向大气释放了大量的碳(C)。无论是最大限度地减少土壤扰动、多样化的作物轮作、或重建多年生草原和整合牲畜是否可以减缓或扭转这一趋势仍然是高度不确定的。本研究在美国中北部通过田间试验调查了有机碳的积累、以及颗粒(POM)和矿物相关(MAOM)有机质的分布,并评估了微生物性状与这些变化的关系。


结果表明,将豆科植物或粪肥添加到一年生种植系统中提高乐POM-C、微生物生物量和微生物碳利用效率,但没有显著增加微生物残体积累,以及MAOM-C或总SOC的存储。多样化、循环放牧的牧场管理有可能增加土壤中持久性碳,突出了管理良好的草原在智能型农业中的关键作用。

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
研究背景

过去150年,现代农业耗尽了世界上许多耕地的土壤有机碳 (SOC) 。在农业土壤中建立土壤有机质 (SOM) 对于我们抵抗这种趋势并满足我们的需求至关重要。来自草地的黑沃土覆盖地球表面约9.16亿公顷,是北美、南美和欧亚大陆的农业中心地带。自开始种植以来,这些黑沃土已释放了约2Pg C。增强黑沃土中的SOM不仅可以抵消全球温室气体排放的一部分,而且还可以改善土壤健康,这是粮食生产、饮用水和生物多样性等重要生态系统服务的基础。


模拟和概念建模表明,黑沃土的SOM积累潜力巨大,但这些土壤的集约化农业使用是否可以积累碳(C),并保持它相对较长的时间仍然存在不确定性。SOM由形成、持久性和功能不同的组分组成。减少耕作、多样化作物轮作以及添加豆类和粪肥被认为是在农田中再生SOM的有希望的策略。但研究表明尽管它们似乎增加了相对未分解的颗粒有机物(POM)部分,这与改善土壤健康直接相关,但它们在建立更持久的矿物相关有机物(MAOM)和提高软土中总碳储量和持久性的能力一直存在争议。


越来越多的证据表明,MAOM主要是微生物残体与矿物表面结合形成的,因此促进有效微生物生长和大量坏死物质产生用于有机矿物结合能够驱动土壤中持久碳的积累。基于此,本研究在威斯康星州综合种植系统开展试验,探究不同管理条件下土壤有机质的数量和组成及其与土壤微生物性状的关系。

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
研究方案

威斯康星州综合种植系统由六个并列的常规和替代种植系统组成,其中包括三个谷物系统:1)连续单一栽培玉米(Maize)系统,每年耕作,2)免耕玉米-大豆(MS)轮作,3)有机管理的玉米-大豆-小麦(MSW)轮作,其在小麦之后具有豆类作物覆盖。和三种饲草系统:4)玉米-苜蓿-苜蓿-苜蓿(MAAA)轮作,5)有机玉米-燕麦/苜蓿/苜蓿(MOA)轮作,和6)具有混合豆类与禾草的多样化、轮牧的牧场。

 

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响



对不同系统有机质组分(POM、MAOM),微生物生物量与CUE特征,微生物残体,以及土壤胞外酶测定,探究不同管理措施对持久碳积累的影响

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
研究结果

一、管理良好的牧场土壤总碳和与矿物质相关的碳含量最高


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


1.(1)减少耕作、轮作多样化或在这些土地添加豆类或肥料不太可能建立 MAOM-C 和 SOC,而土地管理为牧场有能力做到这一点。

2)与MaizeMSMSW MAAA 相比,牧场中的 SOC 储量提高了15% 28%MAOM-C 比所有其它系统高 18% 29%。

(3)MaizeMSPOM-C\MAOM-CSOC没有差异。与MaizeMS相比,基于苜蓿的系统(MOA MAAA)中的POM-CN显著更高,并且在牧场中最高。



文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


2.(1)Maize和MS的POM-C\MAOM-C或SOC没有差异。与Maize和MS相比,基于苜蓿的系统(MOA 和 MAAA)中的POM-C和N显著更高,并且在牧场中最高。

2)基于苜蓿的系统POMC:N ratio显著低于MaizeMS。

(3)有机谷物系统(MSW)具有豆科覆盖作物和肥料添加,但总和地下C输入较少,也具有比Maize和MS更高的POM-C和N以 及更低的 POM C:N 比。


二、在一年生作物系统中掺入豆类和肥料可增强微生物的生长,但不能增加微生物残体或MAOM


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

1.牧场仅脂肪族C-H官能团显著高于其它系统,芳香族和 C-O 官能团在牧场最低。除牧场外,其它系统四种官能团均无显著差异。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

2.Maize和MS在CUE、MBC或氨基糖含量(微生物坏死物质的生物标志物)方面没有差异。与基于谷物的系统相比,基于苜蓿的系统具有更高的微生物CUE和MBC,但没有更高的微生物坏死物质积累。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

3.与MAOM-C的趋势相似,微生物残体生物标志物(氨基糖)的含量在牧场中最高,但在其他系统中没有显著差异。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

4.微生物残体与脂肪族碳是MAOM-C主要贡献者。CUE和POM C:N之间存在负相关关系,表明使用C底物的微生物生理潜力受输入的C:N比率调节。


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

分段结构方程模型显示,MAOM-C与土壤中积累的微生物残体数量直接相关,但与微生物生物量或CUE无关,表明添加低C:N豆科植物和粪肥增强微生物CUE可能并不总是导致微生物坏死物质或 MAOM-C 的积累增加。


三、在管理良好的牧场中,MAOM的形成比一年生作物系统更有效,矿化较慢

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


MSW和MOA中较高的PPO活性和 MOA中较高的PER活性表明在这些低施肥系统中SOM分解比高施肥系统和牧场更快,这表明微生物在这些系统中,坏死物质或MAOM 可能会快速矿化,牧场多酚氧化酶与过氧化物酶活性与其它系统相比较低

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响
结论

黑沃土的一年生谷物或半年草料系统中实施免耕、轮作、豆类和肥料添加可能会改善土壤健康,但不太可能使其表土(0 至 30 cm)实现大气碳汇。

结合低C:N输入可能会增强POM和微生物C循环,但不会导致微生物坏死和MAOM-C增加,这可能是因为更高的SOM矿化。

除了减少侵蚀和养分流失、增加渗透和储水以及增强生物多样性外,管理良好的多年生放牧草地有可能在黑沃土中形成持久的土壤碳,使其成为智能型农业的重要组成部分。

文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响


文献解读|基于有机质组成和数量变化探究不同管理措施对土壤中持久性碳的影响

END


◀栢晖生物▶ 

 特色检测指标

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定

了解详情so栢晖生物


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务