028-8525-3068
新闻动态 News
News 行业新闻

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

日期: 2023-04-26
标签:
植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向
点击上方”蓝字“关注我们吧


文献分享

原名:Plant growth strategy determines the magnitude and direction of drought-induced changes in root exudates in subtropical forests

译名:植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

期刊:Global Change Biology

IF:13.212

发表时间:2023.3

第一作者:Zheng Jiang

01 摘要

背景:根系分泌物是植物和微生物相互作用的重要媒介物质,对气候变化响应十分敏感。然而,极端干旱如何影响根系分泌物输入速率和主要组分以及物种间响应幅度和方向的差异还尚不明确。


方法:在本研究中,我们原位收集了亚热带森林中四种不同生长速率的树种在控制和极端干旱处理下的根系分泌物,并测定分泌物总碳(C)及其主要成分(如糖、有机酸和氨基酸)的输入速率。还量化了土壤特性、根系形态性状和菌根侵染率以确定根系分泌物变化的驱动因素。


结果:极端干旱显著降低了分泌物 总C(17.8%)、糖(30.8%)和氨基酸(35.0%)的输入速率,但增加了有机酸(38.6%)的输入速率,这些变化在很大程度上与干旱引起的树木生长速率、根系形态性状和菌根侵染率的变化有关。

具体而言,与生长相对较慢的树种相比,生长速率相对较高的树种根系分泌物对干旱的响应更敏感,这种响应差异与根系形态特征和菌根侵染率的变化幅度密切相关。


结论:该结果强调了植物生长策略在介导干旱引起的根系分泌物变化中的重要性。根系分泌物、根系形态特征和菌根共生对干旱的响应之间的协调可以纳入地理模型,以改进气候变化对森林生态系统根际碳动态影响的预测。

02 研究背景

植物根系可以分泌多种有机化合物(根系分泌物)进入根际,其输入总量可占植物光合产物的5%-21%。根系分泌物主要由糖、有机酸和氨基酸等低分子量物质组成,在促进根系与有益微生物的相互作用以及抑制病原体方面发挥着关键作用。植物可以自主积极地改变根系分泌物的速率和成分来选择合理的养分获取策略来应对环境条件变化,包括放牧,气候变暖和二氧化碳浓度升高等。然而,极端干旱如何影响根系分泌物的质量和数量,尤其是在亚热带森林中,目前还不清楚。


在全球变化的背景下,增强的水文循环可能会显著增加干旱事件的强度和频率,从而对陆地生态系统中的植物-土壤相互作用和地下生物地球化学过程产生强烈影响。目前,只有少数研究探讨了极端干旱对根系分泌物输入速率的影响,也产生了不同的结果(升高或降低)。同时,植物还可以改变根系分泌物的数量和组成以提高抗旱性或适应能力。具体来讲,干旱可以降低氨基酸的输入速率,从而维持细胞渗透压,提高植物的水分吸收能力。还可以增加根系有机酸和黄酮的输入速率,促进植物与土壤中抗旱细菌的相互作用。


因此,研究干旱对根系分泌物碳输入速率和组成影响的调控因素有助于阐明根际生态过程和森林生物地球化学循环对环境变化的响应和潜在机制。


干旱对根系分泌物的影响可能受到一系列复杂的非生物因素(如土壤含水量)和生物因素(如树种、根系形态特征和菌根共生)的影响。大量研究表明植物在干旱条件下会改变地下碳分配策略,从而形成具有不同功能的根系性状来促进水分和养分的吸收。由于根系分泌物在获取资源中发挥着关键作用,碳输入速率可能与竞争型的根系性状之间存在关联(如比根长和菌根侵染)。因此,干旱胁迫可能会重塑细根生物量(FRB)、根系形态特征、根系分泌物和菌根共生之间的协调关系,以达到有效获取资源的目的。同时,由于生理和生态特征(如生长速率、菌根类型)的差异,干旱影响根系分泌物的大小和方向可能具有物种特异性。然而,据我们所知,根系分泌物、FRB、根系形态性状和菌根共生与干旱胁迫之间的协调关系尚未被研究。


干旱对根系分泌物的物种特异性影响可能与植物的生长策略有关。快速生长的植物具有获取资源利用策略和较大的表型可塑性,而缓慢生长的植物则具有保守的策略,更多地依赖于与菌根真菌的关联。在干旱胁迫下,相对于缓慢生长的植物,快速生长的植物可能会将更多光合固定C从根系分泌物向FRB、根系形态构建和菌根共生的重新分配,从而显著促进水分和养分的获取。然而,植物的生长策略如何通过调控干旱诱导的根系功能性状的变化来影响根系分泌物 总C和组分的输入速率尚不清楚。


亚热带森林具有较高的固碳能力和植被生产力,也极易受到干旱的影响。增加地下C分配和根系吸收能力被认为是亚热带森林维持水分需求的关键策略,这将强烈影响根系渗出和相关的根际生态过程。本研究在亚热带森林中选择了4种生长速率不同的树种进行降水排除试验(TFE),探讨干旱对根系 总C及其组分(糖、有机酸和氨基酸)输入速率的影响。

我们假设:

1.由于具有获取型资源利用策略的快速生长树种的根系功能性状具有更大的可塑性,快速生长树种的根系分泌物输入速率对干旱的响应比生长缓慢的树种将更加敏感。


2.由于根系功能性状在获取资源方面的重要作用,干旱条件下,树木生长速率调节根系分泌物的程度与根系功能性状和菌根共生的变化密切相关。

03 主要结果

1.根系分泌物总C和组分的输入速率

干旱处理显著降低了(17.8%)四个树种根系分泌物的总C输入速率(图1a)。干旱对总C输入速率的影响与干旱对生长速率的影响显著正相关(R2= 0.66, p< .01)。对照处理和干旱处理的分泌物氮输入速率无显著差异(图1b)。

干旱处理显著降低了根系分泌物糖(30.8%)和氨基酸(35.0%)的输入速率(图1 d和e)。干旱对糖和氨基酸输入速率的影响与干旱对生长速率的影响显著正相关(R2= 0.50, p< .01; R2 = 0.56, p< .01)。相反,干旱处理显著升高了根系分泌物有机酸(38.6%)的输入速率(图1 f)。干旱对有机酸输入速率的影响与干旱对生长速率的影响显著正相关(R2= 0.53, p< .01)。


植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向


图1干旱对根系分泌物总C输入速率(a)、氮输入速率(b)、碳氮比值(c)、糖输入速率(d)、有机酸输入速率(e)、氨基酸输入速率(f)的影响。插图显示了干旱对四种树种根系渗出率的影响(n = 36)。对照处理和干旱处理之间的显著差异用星号表示(p< .05)。


2.根系形态特征、菌根侵染率和土壤特性

与对照相比,干旱处理显著增加了比根长(SRL:60.9%)、比根面积(SRA:26.0%)和菌根侵染率(38.8%)(图2)。生长速率较快的树种具有更大的SRL和SRA。干旱对SRL、SRA和菌根侵染率的影响与干旱对生长速率的影响显著正相关(R2= 0.51, p< .01; R2= 0.36, p< .01; R2 = 0.57, p< .01)。

与对照相比,干旱处理显著降低了根系直径(RD:12.1%)和组织密度(RTD:25.5%)(图2)。干旱对RD和RTD的影响与干旱对生长速率的影响显著正相关(R2= 0.50, p< .01; R2= 0.49)。此外,在控制处理和干旱处理下,四种树种的细根生物量(FRB)均无显著差异(p= .28)。

干旱样地土壤湿度平均为15.4%(v/v),比对照区低31.9%。土壤有机碳(SOC)、TN、土壤总磷、土壤碳氮比(C/N)、土壤氮磷比(N/P)、DIN、土壤AP、土壤温度、pH均无显著差异。


植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向


图2干旱对比根长(a)、比根表面积(b)、根直径(c)、根组织密度(d)、细根生物量(e)和菌根侵染率(f)的影响。插图显示了干旱对四种树种根系渗出率的影响(n = 36)。对照处理和干旱处理之间的显著差异用星号表示(p< .05)


3.小气候、根系形态特征、土壤性质和根系分泌物的关系

相对重要性分析表明,与其他非生物或生物因素(如SOC和pH)相比,相对生长速率、根系形态特征和菌根侵染率共同解释了根系分泌率总C、糖、有机酸和氨基酸的输入速率的大部分变异(图3)。此外,菌根类型对分泌物总C、糖和氨基酸的输入速率也有显著的调控作用。干旱引起的分泌物总C和组分输入速率的变化与相对生长率、根系形态性状和菌根侵染率的变化显著正相关(图4a)。

结构方程模型表明,干旱引起相对生长速率、根系形态特征变化分别解释了分泌物总C、糖、氨基酸和有机酸输入速率变化量71%、72%、63%和73%的变异(图4b)。其中,干旱诱导的相对生长速率的变化是驱动根系分泌物总C和各组分输入速率的最重要的驱动因素(图3和图4)。

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

图3四种植物根系功能性状和土壤特性对根细分泌物总C、糖、有机酸和氨基酸输入速率变化的相对贡献(a-d、n = 72)。AP:土壤有效磷;DIN:溶解无机氮;FRB:细根生物量;MI:菌根感染率;Myc:菌根类型;RD:直径;RGR:相对生长速率;RTD:根组织密度;SM:土壤水分;SOC:土壤有机碳;SRA:比根面积;SRL:比根长;TN:总氮;TP:总磷;ST:土壤温度。显著性水平用*表示(p< .05)。

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向

图4干旱对根系分泌物输入速率、相对生长速率、根系功能性状和土壤性质的影响之间的皮尔逊相关系数矩阵和这些变量的结构方程模型(a,b;将4个物种聚集在一起,n = 36)。显著性水平用星号表示(p< .05)。干旱对这些变量的影响(VariableE)计算为Variable(Drought-Control)和Variable(Control)的比值,其中Variable(Drought-Control)表示干旱和控制处理的变量之间的差异,Variable(Control)表示控制处理的测量值。

04 结论

1.极端干旱显著降低了根系分泌物总C、糖和氨基酸的输入速率,但增加了有机酸的输入速率(图5)。


2.植物生长策略介导了干旱对根系分泌物输入速率的影响。具体地,与生长速率相对较慢的树种相比,生长速率更快的树种根系分泌物对干旱的响应更敏感,这种变化与根系形态性状和菌根侵染率的响应程度密切相关。


3.具有不同生长策略的树种间根系分泌物、根系形态性状和菌根共生的协调可能有助于森林抵御极端干旱,并对土壤微生物群落和相关的根际碳动态对土壤碳储存能力产生强烈影响。


植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向图5概念框架图。

论文id:https://onlinelibrary.wiley.com/doi/10.1111/gcb.16685

植物生长策略决定了亚热带森林根系分泌物对干旱的响应幅度与方向
END

◀栢晖生物▶ 

 特色检测指标

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼14层


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务